Mingcai Xing , Shuo Liu , Yi Cui , Jinquan Xu , Zhaohui Xu , Lining Gao
{"title":"行星滚柱丝杠机构的综合滑动磨损预测方法","authors":"Mingcai Xing , Shuo Liu , Yi Cui , Jinquan Xu , Zhaohui Xu , Lining Gao","doi":"10.1016/j.wear.2024.205536","DOIUrl":null,"url":null,"abstract":"<div><p>The thread-pairs wear has a significant role in the transmission accuracy, operational stability and service life of planetary roller screw mechanism (PRSM). Nevertheless, the previous literatures still lack the investigation on the wear evolution of roller, nut and screw. Hence, an accumulative wear depth (AWD) prediction model is proposed for PRSM with reciprocating motion. The presented model is validated by the measured wear phenomena of thread pairs and the experimental results in the literature. The equivalent sliding wear experiment of PRSM is designed and the sliding wear coefficient of PRSM material is obtained by the equivalent sliding wear experiment. Considering the thread profile error caused by AWD of roller, nut and screw, the load distribution (LD) and sliding velocities on screw-roller (SR) and nut-roller (NR) sides are calculated. More importantly, the interactions between the AWD, LD and sliding velocity are investigated. Furthermore, the effects of axial load on the AWD, sliding velocities in contact regions and load distribution coefficient are analyzed.</p></div>","PeriodicalId":23970,"journal":{"name":"Wear","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A comprehensive sliding wear prediction method for planetary roller screw mechanism\",\"authors\":\"Mingcai Xing , Shuo Liu , Yi Cui , Jinquan Xu , Zhaohui Xu , Lining Gao\",\"doi\":\"10.1016/j.wear.2024.205536\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The thread-pairs wear has a significant role in the transmission accuracy, operational stability and service life of planetary roller screw mechanism (PRSM). Nevertheless, the previous literatures still lack the investigation on the wear evolution of roller, nut and screw. Hence, an accumulative wear depth (AWD) prediction model is proposed for PRSM with reciprocating motion. The presented model is validated by the measured wear phenomena of thread pairs and the experimental results in the literature. The equivalent sliding wear experiment of PRSM is designed and the sliding wear coefficient of PRSM material is obtained by the equivalent sliding wear experiment. Considering the thread profile error caused by AWD of roller, nut and screw, the load distribution (LD) and sliding velocities on screw-roller (SR) and nut-roller (NR) sides are calculated. More importantly, the interactions between the AWD, LD and sliding velocity are investigated. Furthermore, the effects of axial load on the AWD, sliding velocities in contact regions and load distribution coefficient are analyzed.</p></div>\",\"PeriodicalId\":23970,\"journal\":{\"name\":\"Wear\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wear\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0043164824003016\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wear","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0043164824003016","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
A comprehensive sliding wear prediction method for planetary roller screw mechanism
The thread-pairs wear has a significant role in the transmission accuracy, operational stability and service life of planetary roller screw mechanism (PRSM). Nevertheless, the previous literatures still lack the investigation on the wear evolution of roller, nut and screw. Hence, an accumulative wear depth (AWD) prediction model is proposed for PRSM with reciprocating motion. The presented model is validated by the measured wear phenomena of thread pairs and the experimental results in the literature. The equivalent sliding wear experiment of PRSM is designed and the sliding wear coefficient of PRSM material is obtained by the equivalent sliding wear experiment. Considering the thread profile error caused by AWD of roller, nut and screw, the load distribution (LD) and sliding velocities on screw-roller (SR) and nut-roller (NR) sides are calculated. More importantly, the interactions between the AWD, LD and sliding velocity are investigated. Furthermore, the effects of axial load on the AWD, sliding velocities in contact regions and load distribution coefficient are analyzed.
期刊介绍:
Wear journal is dedicated to the advancement of basic and applied knowledge concerning the nature of wear of materials. Broadly, topics of interest range from development of fundamental understanding of the mechanisms of wear to innovative solutions to practical engineering problems. Authors of experimental studies are expected to comment on the repeatability of the data, and whenever possible, conduct multiple measurements under similar testing conditions. Further, Wear embraces the highest standards of professional ethics, and the detection of matching content, either in written or graphical form, from other publications by the current authors or by others, may result in rejection.