{"title":"沉积脂肪酸的化合物特异性放射性碳分析:作为日本富士山火山区湖泊沉积物测年工具的潜力","authors":"Shinya Yamamoto , Yosuke Miyairi , Yusuke Yokoyama , Yukihiko Serisawa , Hisami Suga , Nanako O. Ogawa , Naohiko Ohkouchi","doi":"10.1016/j.orggeochem.2024.104860","DOIUrl":null,"url":null,"abstract":"<div><p>Compound-specific radiocarbon analysis (CSRA) is a promising tool for dating sediment sequences where traditional dating methods are impractical. However, the applicability of CSRA of short-chain fatty acids as a dating tool remains poorly understood, especially in lacustrine settings. Accordingly, we determined the radiocarbon content (Δ<sup>14</sup>C) of individual fatty acids in sediments of Lake Yamanaka (central Japan), as well as their stable carbon and hydrogen isotope ratios, to evaluate the potential of CSRA as a dating tool in volcanic lake environments. We found that the Δ<sup>14</sup>C values of plant-derived (C<sub>24</sub>, C<sub>26</sub>, and C<sub>28</sub>) <em>n</em>-fatty acids (–99‰ to –149‰) were considerably lower than the Δ<sup>14</sup>C of charred plants (139‰) within the sediments and those of living aquatic plants (–52‰ to –58‰) in Lake Yamanaka, suggesting that contributions from pre-aged terrestrial and aquatic plant materials likely affect these acids. Similarly, the Δ<sup>14</sup>C of C<sub>16</sub> <em>n</em>-fatty acid (–95‰) in surface sediments was much lower than the Δ<sup>14</sup>C of modern aquatic plants (–52‰ to –58‰), as well as the Δ<sup>14</sup>C of dissolved organic carbon (DIC) in surface water (–48‰). Together with the stable isotope results, we conclude that in addition to autochthonous aquatic sources, contributions from pre-aged terrestrial carbon sources significantly affect the Δ<sup>14</sup>C of C<sub>16</sub> <em>n</em>-fatty acids. Comparing fatty acid Δ<sup>14</sup>C and concentration data across lakes within the Mt. Fuji region suggests that CSRA of the C<sub>16</sub> acid provides valid chronological information only when the C<sub>16</sub> originates exclusively from autochthonous aquatic sources, with minor allochthonous terrestrial input.</p></div>","PeriodicalId":400,"journal":{"name":"Organic Geochemistry","volume":"196 ","pages":"Article 104860"},"PeriodicalIF":2.6000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Compound-specific radiocarbon analysis of sedimentary fatty acids: Potential as a dating tool for lake sediments of Mt. Fuji volcanic region, Japan\",\"authors\":\"Shinya Yamamoto , Yosuke Miyairi , Yusuke Yokoyama , Yukihiko Serisawa , Hisami Suga , Nanako O. Ogawa , Naohiko Ohkouchi\",\"doi\":\"10.1016/j.orggeochem.2024.104860\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Compound-specific radiocarbon analysis (CSRA) is a promising tool for dating sediment sequences where traditional dating methods are impractical. However, the applicability of CSRA of short-chain fatty acids as a dating tool remains poorly understood, especially in lacustrine settings. Accordingly, we determined the radiocarbon content (Δ<sup>14</sup>C) of individual fatty acids in sediments of Lake Yamanaka (central Japan), as well as their stable carbon and hydrogen isotope ratios, to evaluate the potential of CSRA as a dating tool in volcanic lake environments. We found that the Δ<sup>14</sup>C values of plant-derived (C<sub>24</sub>, C<sub>26</sub>, and C<sub>28</sub>) <em>n</em>-fatty acids (–99‰ to –149‰) were considerably lower than the Δ<sup>14</sup>C of charred plants (139‰) within the sediments and those of living aquatic plants (–52‰ to –58‰) in Lake Yamanaka, suggesting that contributions from pre-aged terrestrial and aquatic plant materials likely affect these acids. Similarly, the Δ<sup>14</sup>C of C<sub>16</sub> <em>n</em>-fatty acid (–95‰) in surface sediments was much lower than the Δ<sup>14</sup>C of modern aquatic plants (–52‰ to –58‰), as well as the Δ<sup>14</sup>C of dissolved organic carbon (DIC) in surface water (–48‰). Together with the stable isotope results, we conclude that in addition to autochthonous aquatic sources, contributions from pre-aged terrestrial carbon sources significantly affect the Δ<sup>14</sup>C of C<sub>16</sub> <em>n</em>-fatty acids. Comparing fatty acid Δ<sup>14</sup>C and concentration data across lakes within the Mt. Fuji region suggests that CSRA of the C<sub>16</sub> acid provides valid chronological information only when the C<sub>16</sub> originates exclusively from autochthonous aquatic sources, with minor allochthonous terrestrial input.</p></div>\",\"PeriodicalId\":400,\"journal\":{\"name\":\"Organic Geochemistry\",\"volume\":\"196 \",\"pages\":\"Article 104860\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Organic Geochemistry\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0146638024001256\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Geochemistry","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0146638024001256","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Compound-specific radiocarbon analysis of sedimentary fatty acids: Potential as a dating tool for lake sediments of Mt. Fuji volcanic region, Japan
Compound-specific radiocarbon analysis (CSRA) is a promising tool for dating sediment sequences where traditional dating methods are impractical. However, the applicability of CSRA of short-chain fatty acids as a dating tool remains poorly understood, especially in lacustrine settings. Accordingly, we determined the radiocarbon content (Δ14C) of individual fatty acids in sediments of Lake Yamanaka (central Japan), as well as their stable carbon and hydrogen isotope ratios, to evaluate the potential of CSRA as a dating tool in volcanic lake environments. We found that the Δ14C values of plant-derived (C24, C26, and C28) n-fatty acids (–99‰ to –149‰) were considerably lower than the Δ14C of charred plants (139‰) within the sediments and those of living aquatic plants (–52‰ to –58‰) in Lake Yamanaka, suggesting that contributions from pre-aged terrestrial and aquatic plant materials likely affect these acids. Similarly, the Δ14C of C16n-fatty acid (–95‰) in surface sediments was much lower than the Δ14C of modern aquatic plants (–52‰ to –58‰), as well as the Δ14C of dissolved organic carbon (DIC) in surface water (–48‰). Together with the stable isotope results, we conclude that in addition to autochthonous aquatic sources, contributions from pre-aged terrestrial carbon sources significantly affect the Δ14C of C16n-fatty acids. Comparing fatty acid Δ14C and concentration data across lakes within the Mt. Fuji region suggests that CSRA of the C16 acid provides valid chronological information only when the C16 originates exclusively from autochthonous aquatic sources, with minor allochthonous terrestrial input.
期刊介绍:
Organic Geochemistry serves as the only dedicated medium for the publication of peer-reviewed research on all phases of geochemistry in which organic compounds play a major role. The Editors welcome contributions covering a wide spectrum of subjects in the geosciences broadly based on organic chemistry (including molecular and isotopic geochemistry), and involving geology, biogeochemistry, environmental geochemistry, chemical oceanography and hydrology.
The scope of the journal includes research involving petroleum (including natural gas), coal, organic matter in the aqueous environment and recent sediments, organic-rich rocks and soils and the role of organics in the geochemical cycling of the elements.
Sedimentological, paleontological and organic petrographic studies will also be considered for publication, provided that they are geochemically oriented. Papers cover the full range of research activities in organic geochemistry, and include comprehensive review articles, technical communications, discussion/reply correspondence and short technical notes. Peer-reviews organised through three Chief Editors and a staff of Associate Editors, are conducted by well known, respected scientists from academia, government and industry. The journal also publishes reviews of books, announcements of important conferences and meetings and other matters of direct interest to the organic geochemical community.