溶热合成 V2O5、ZrO2 和 ZrV2O7 纳米粒子的结构、光学和详细光致发光表征

IF 2 3区 化学 Q4 CHEMISTRY, PHYSICAL
Abdelmounaim Chetoui , Ilyas Belkhettab , Youcef Messai , Aicha Ziouche , Meftah Tablaoui
{"title":"溶热合成 V2O5、ZrO2 和 ZrV2O7 纳米粒子的结构、光学和详细光致发光表征","authors":"Abdelmounaim Chetoui ,&nbsp;Ilyas Belkhettab ,&nbsp;Youcef Messai ,&nbsp;Aicha Ziouche ,&nbsp;Meftah Tablaoui","doi":"10.1016/j.chemphys.2024.112413","DOIUrl":null,"url":null,"abstract":"<div><p>It is indisputable that structural defects are pivotal in modulating the properties of materials. This study provides a comprehensive analysis of the structural, optical, and photoluminescence characteristics of V<sub>2</sub>O<sub>5</sub>, ZrO<sub>2</sub>, and ZrV<sub>2</sub>O<sub>7</sub>.These materials were chosen for their potential applications in various key technological domains. The XRD results revealed the formation of high-purity materials with no secondary phases. It was determined that ZrO<sub>2</sub>exhibits the most significant quantity of structural defects among the investigated materials. The variation in crystallite size as determined by XRD aligns with the variation in grain size observed through Scanning Electron Microscopy (SEM).The optical band gaps of V<sub>2</sub>O<sub>5</sub>, ZrO<sub>2</sub>, and ZrV<sub>2</sub>O<sub>7</sub> were determined to be 2.27 eV, 5.19 eV, and 2.38 eV, respectively. X-ray Photoelectron Spectroscopy (XPS) analysis indicated the presence of constituent elements without any contaminants. A detailed examination of the photoluminescence (PL) emission characteristics in both UV–Vis and near-infrared (NIR) regions for all materials presented broad visible luminescence in the [450–650] nm range under UV excitation. Structural defects are crucial in determining the physico-chemical properties of materials. This is thoroughly examined for V<sub>2</sub>O<sub>5</sub>, ZrO<sub>2</sub>, and ZrV<sub>2</sub>O<sub>7</sub>.The infrared (IR) emission spectra, introduced for the first time in this study for V<sub>2</sub>O<sub>5</sub>, ZrO<sub>2</sub>, and ZrV<sub>2</sub>O<sub>7</sub>, are employed to elucidate the localization of structural defects within the band gap.</p></div>","PeriodicalId":272,"journal":{"name":"Chemical Physics","volume":"587 ","pages":"Article 112413"},"PeriodicalIF":2.0000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural, optical, and detailed photoluminescence characterization of solvothermal synthesized V2O5, ZrO2, and ZrV2O7 nanoparticles\",\"authors\":\"Abdelmounaim Chetoui ,&nbsp;Ilyas Belkhettab ,&nbsp;Youcef Messai ,&nbsp;Aicha Ziouche ,&nbsp;Meftah Tablaoui\",\"doi\":\"10.1016/j.chemphys.2024.112413\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>It is indisputable that structural defects are pivotal in modulating the properties of materials. This study provides a comprehensive analysis of the structural, optical, and photoluminescence characteristics of V<sub>2</sub>O<sub>5</sub>, ZrO<sub>2</sub>, and ZrV<sub>2</sub>O<sub>7</sub>.These materials were chosen for their potential applications in various key technological domains. The XRD results revealed the formation of high-purity materials with no secondary phases. It was determined that ZrO<sub>2</sub>exhibits the most significant quantity of structural defects among the investigated materials. The variation in crystallite size as determined by XRD aligns with the variation in grain size observed through Scanning Electron Microscopy (SEM).The optical band gaps of V<sub>2</sub>O<sub>5</sub>, ZrO<sub>2</sub>, and ZrV<sub>2</sub>O<sub>7</sub> were determined to be 2.27 eV, 5.19 eV, and 2.38 eV, respectively. X-ray Photoelectron Spectroscopy (XPS) analysis indicated the presence of constituent elements without any contaminants. A detailed examination of the photoluminescence (PL) emission characteristics in both UV–Vis and near-infrared (NIR) regions for all materials presented broad visible luminescence in the [450–650] nm range under UV excitation. Structural defects are crucial in determining the physico-chemical properties of materials. This is thoroughly examined for V<sub>2</sub>O<sub>5</sub>, ZrO<sub>2</sub>, and ZrV<sub>2</sub>O<sub>7</sub>.The infrared (IR) emission spectra, introduced for the first time in this study for V<sub>2</sub>O<sub>5</sub>, ZrO<sub>2</sub>, and ZrV<sub>2</sub>O<sub>7</sub>, are employed to elucidate the localization of structural defects within the band gap.</p></div>\",\"PeriodicalId\":272,\"journal\":{\"name\":\"Chemical Physics\",\"volume\":\"587 \",\"pages\":\"Article 112413\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0301010424002428\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301010424002428","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

毋庸置疑,结构缺陷是调节材料特性的关键。本研究全面分析了 V2O5、ZrO2 和 ZrV2O7 的结构、光学和光致发光特性。XRD 结果表明,这些材料纯度很高,没有次生相。在所研究的材料中,ZrO2 的结构缺陷数量最多。X 射线衍射仪测定的晶粒大小变化与扫描电子显微镜(SEM)观察到的晶粒大小变化一致。X 射线光电子能谱(XPS)分析表明,其中的组成元素不含任何杂质。对所有材料在紫外-可见光和近红外(NIR)区域的光致发光(PL)发射特性进行的详细研究表明,在紫外激发下,[450-650] nm 范围内存在宽可见光。结构缺陷是决定材料物理化学性质的关键。本研究首次引入了 V2O5、ZrO2 和 ZrV2O7 的红外发射光谱,用于阐明带隙内结构缺陷的定位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Structural, optical, and detailed photoluminescence characterization of solvothermal synthesized V2O5, ZrO2, and ZrV2O7 nanoparticles

It is indisputable that structural defects are pivotal in modulating the properties of materials. This study provides a comprehensive analysis of the structural, optical, and photoluminescence characteristics of V2O5, ZrO2, and ZrV2O7.These materials were chosen for their potential applications in various key technological domains. The XRD results revealed the formation of high-purity materials with no secondary phases. It was determined that ZrO2exhibits the most significant quantity of structural defects among the investigated materials. The variation in crystallite size as determined by XRD aligns with the variation in grain size observed through Scanning Electron Microscopy (SEM).The optical band gaps of V2O5, ZrO2, and ZrV2O7 were determined to be 2.27 eV, 5.19 eV, and 2.38 eV, respectively. X-ray Photoelectron Spectroscopy (XPS) analysis indicated the presence of constituent elements without any contaminants. A detailed examination of the photoluminescence (PL) emission characteristics in both UV–Vis and near-infrared (NIR) regions for all materials presented broad visible luminescence in the [450–650] nm range under UV excitation. Structural defects are crucial in determining the physico-chemical properties of materials. This is thoroughly examined for V2O5, ZrO2, and ZrV2O7.The infrared (IR) emission spectra, introduced for the first time in this study for V2O5, ZrO2, and ZrV2O7, are employed to elucidate the localization of structural defects within the band gap.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Physics
Chemical Physics 化学-物理:原子、分子和化学物理
CiteScore
4.60
自引率
4.30%
发文量
278
审稿时长
39 days
期刊介绍: Chemical Physics publishes experimental and theoretical papers on all aspects of chemical physics. In this journal, experiments are related to theory, and in turn theoretical papers are related to present or future experiments. Subjects covered include: spectroscopy and molecular structure, interacting systems, relaxation phenomena, biological systems, materials, fundamental problems in molecular reactivity, molecular quantum theory and statistical mechanics. Computational chemistry studies of routine character are not appropriate for this journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信