中亚造山带东南部内蒙古中部白兴图蛇绿岩的地质年代、岩石成因及构造影响

IF 2.7 3区 地球科学 Q2 GEOSCIENCES, MULTIDISCIPLINARY
Cong Ding , Zhicheng Zhang , Qi Wang , Jianzhou Tang
{"title":"中亚造山带东南部内蒙古中部白兴图蛇绿岩的地质年代、岩石成因及构造影响","authors":"Cong Ding ,&nbsp;Zhicheng Zhang ,&nbsp;Qi Wang ,&nbsp;Jianzhou Tang","doi":"10.1016/j.jseaes.2024.106278","DOIUrl":null,"url":null,"abstract":"<div><p>Rodingite, a metasomatic rock type related to the serpentinisation of ultramafic rocks, occurs as dykes or lenses in serpentinite of the ophiolitic mélange. The formation age, protolith and metamorphic context of the rodingites are crucial for evaluating the hydrothermal activity of the ancient ocean floor and the tectonic history of the ophiolite. This study presents particular research on metamorphic petrology, geochemistry and zircon U–Pb chronology of rodingites and their associated mafic–ultramafic rocks in the Baixingtu ophiolite, the middle segment of the Erenhot-Hegenshan ophiolite belt (EHOB), southeastern Central Asian Orogenic Belt. The mean metamorphic ages of rodingites are 345.8 ± 3.8 Ma, 339.9 ± 4.8 Ma, and 344.5 ± 9.2 Ma. According to the chlorite thermometer, the final mineral assemblages of rodingites formed at temperatures ranging from 114.99 °C to 351.10 °C. The high oxygen fugacity of nascent clinopyroxenes and the negative anomaly of Ce in adjacent serpentinites (δCe = 0.34–0.77) prove that rodingitisation occurs in shallow oceanic crust by the reaction of seawater with ultramafic rocks to produce Ca-rich fluids. Accordingly, the Baixingtu ophiolite was produced by an ocean floor metamorphism, whose rodingitisation occurred shortly after the formation of the oceanic crust. Combined with other ophiolite data from the EHOB, the Hegenshan Ocean was constantly generating new oceanic crust in the Early Carboniferous.</p></div>","PeriodicalId":50253,"journal":{"name":"Journal of Asian Earth Sciences","volume":"275 ","pages":"Article 106278"},"PeriodicalIF":2.7000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geochronology, petrogenesis and tectonic implications of rodingites from the Baixingtu ophiolite in central Inner Mongolia, southeastern Central Asian Orogenic Belt\",\"authors\":\"Cong Ding ,&nbsp;Zhicheng Zhang ,&nbsp;Qi Wang ,&nbsp;Jianzhou Tang\",\"doi\":\"10.1016/j.jseaes.2024.106278\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Rodingite, a metasomatic rock type related to the serpentinisation of ultramafic rocks, occurs as dykes or lenses in serpentinite of the ophiolitic mélange. The formation age, protolith and metamorphic context of the rodingites are crucial for evaluating the hydrothermal activity of the ancient ocean floor and the tectonic history of the ophiolite. This study presents particular research on metamorphic petrology, geochemistry and zircon U–Pb chronology of rodingites and their associated mafic–ultramafic rocks in the Baixingtu ophiolite, the middle segment of the Erenhot-Hegenshan ophiolite belt (EHOB), southeastern Central Asian Orogenic Belt. The mean metamorphic ages of rodingites are 345.8 ± 3.8 Ma, 339.9 ± 4.8 Ma, and 344.5 ± 9.2 Ma. According to the chlorite thermometer, the final mineral assemblages of rodingites formed at temperatures ranging from 114.99 °C to 351.10 °C. The high oxygen fugacity of nascent clinopyroxenes and the negative anomaly of Ce in adjacent serpentinites (δCe = 0.34–0.77) prove that rodingitisation occurs in shallow oceanic crust by the reaction of seawater with ultramafic rocks to produce Ca-rich fluids. Accordingly, the Baixingtu ophiolite was produced by an ocean floor metamorphism, whose rodingitisation occurred shortly after the formation of the oceanic crust. Combined with other ophiolite data from the EHOB, the Hegenshan Ocean was constantly generating new oceanic crust in the Early Carboniferous.</p></div>\",\"PeriodicalId\":50253,\"journal\":{\"name\":\"Journal of Asian Earth Sciences\",\"volume\":\"275 \",\"pages\":\"Article 106278\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Asian Earth Sciences\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1367912024002736\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Asian Earth Sciences","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1367912024002736","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

罗丁岩是一种与超基性岩蛇绿岩化有关的变质岩,以岩堤或透镜的形式出现在蛇绿岩化的蛇绿混杂岩中。罗丁岩的形成年代、原岩和变质背景对于评估古洋底的热液活动和蛇绿岩的构造历史至关重要。本研究特别介绍了中亚造山带东南部二连浩特-赫根山蛇绿岩带(EHOB)中段白兴图蛇绿岩及其相关黑云母-超黑云母岩石的变质岩石学、地球化学和锆石U-Pb年代学研究。罗丁岩的平均变质年龄分别为 345.8 ± 3.8 Ma、339.9 ± 4.8 Ma 和 344.5 ± 9.2 Ma。根据绿泥石温度计,罗丁岩的最终矿物组合是在 114.99 ℃ 至 351.10 ℃ 的温度范围内形成的。新生闪长岩的高富氧性和邻近蛇绿岩的负Ce异常(δCe = 0.34-0.77)证明,罗丁岩化发生在浅海洋壳中,由海水与超基性岩反应生成富含Ca的流体。因此,白兴图蛇绿岩是由洋底变质作用产生的,其罗丁炎作用发生在大洋地壳形成后不久。结合EHOB的其他蛇绿岩数据,黑根山洋在早石炭纪不断产生新的洋壳。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Geochronology, petrogenesis and tectonic implications of rodingites from the Baixingtu ophiolite in central Inner Mongolia, southeastern Central Asian Orogenic Belt

Rodingite, a metasomatic rock type related to the serpentinisation of ultramafic rocks, occurs as dykes or lenses in serpentinite of the ophiolitic mélange. The formation age, protolith and metamorphic context of the rodingites are crucial for evaluating the hydrothermal activity of the ancient ocean floor and the tectonic history of the ophiolite. This study presents particular research on metamorphic petrology, geochemistry and zircon U–Pb chronology of rodingites and their associated mafic–ultramafic rocks in the Baixingtu ophiolite, the middle segment of the Erenhot-Hegenshan ophiolite belt (EHOB), southeastern Central Asian Orogenic Belt. The mean metamorphic ages of rodingites are 345.8 ± 3.8 Ma, 339.9 ± 4.8 Ma, and 344.5 ± 9.2 Ma. According to the chlorite thermometer, the final mineral assemblages of rodingites formed at temperatures ranging from 114.99 °C to 351.10 °C. The high oxygen fugacity of nascent clinopyroxenes and the negative anomaly of Ce in adjacent serpentinites (δCe = 0.34–0.77) prove that rodingitisation occurs in shallow oceanic crust by the reaction of seawater with ultramafic rocks to produce Ca-rich fluids. Accordingly, the Baixingtu ophiolite was produced by an ocean floor metamorphism, whose rodingitisation occurred shortly after the formation of the oceanic crust. Combined with other ophiolite data from the EHOB, the Hegenshan Ocean was constantly generating new oceanic crust in the Early Carboniferous.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Asian Earth Sciences
Journal of Asian Earth Sciences 地学-地球科学综合
CiteScore
5.90
自引率
10.00%
发文量
324
审稿时长
71 days
期刊介绍: Journal of Asian Earth Sciences has an open access mirror journal Journal of Asian Earth Sciences: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review. The Journal of Asian Earth Sciences is an international interdisciplinary journal devoted to all aspects of research related to the solid Earth Sciences of Asia. The Journal publishes high quality, peer-reviewed scientific papers on the regional geology, tectonics, geochemistry and geophysics of Asia. It will be devoted primarily to research papers but short communications relating to new developments of broad interest, reviews and book reviews will also be included. Papers must have international appeal and should present work of more than local significance. The scope includes deep processes of the Asian continent and its adjacent oceans; seismology and earthquakes; orogeny, magmatism, metamorphism and volcanism; growth, deformation and destruction of the Asian crust; crust-mantle interaction; evolution of life (early life, biostratigraphy, biogeography and mass-extinction); fluids, fluxes and reservoirs of mineral and energy resources; surface processes (weathering, erosion, transport and deposition of sediments) and resulting geomorphology; and the response of the Earth to global climate change as viewed within the Asian continent and surrounding oceans.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信