显示渐进各向异性损伤的脆性固体的数据驱动构造模型

IF 5.3 Q2 MATERIALS SCIENCE, COMPOSITES
Weijian Ge, Vito L Tagarielli
{"title":"显示渐进各向异性损伤的脆性固体的数据驱动构造模型","authors":"Weijian Ge,&nbsp;Vito L Tagarielli","doi":"10.1016/j.jcomc.2024.100501","DOIUrl":null,"url":null,"abstract":"<div><p>We propose and demonstrate a computational framework to obtain data-driven surrogate constitutive models capturing the mechanical response of anisotropic brittle solids displaying progressive anisotropic damage. We train the constitutive models on data obtained from the analysis of a volume element of a material of interest; the data is generated by a constitutive model for braided composites, displaying a complex anisotropic damage evolution progressively transitioning from transversely isotropic to orthotropic. Training involves imposing six-dimensional random strain histories on the physical model and recording the histories of stress, strain and homogenised stiffness matrix of the material, obtained by a set of linear perturbation analyses. Supervised machine learning and dimensionality reduction are applied to the data and a structure for a surrogate model is proposed. The surrogate predicts the evolution of the stiffness of the solid consequent to an arbitrary imposed six-dimensional strain increment, thereby calculating the corresponding increment in stress. The model displays high accuracy and is able to reproduce the homogenised material's response via simple neural networks.</p></div>","PeriodicalId":34525,"journal":{"name":"Composites Part C Open Access","volume":"15 ","pages":"Article 100501"},"PeriodicalIF":5.3000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666682024000707/pdfft?md5=1e4a9221a3a6f168ae6efc063767f0fb&pid=1-s2.0-S2666682024000707-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Data-driven constitutive models for brittle solids displaying progressive anisotropic damage\",\"authors\":\"Weijian Ge,&nbsp;Vito L Tagarielli\",\"doi\":\"10.1016/j.jcomc.2024.100501\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We propose and demonstrate a computational framework to obtain data-driven surrogate constitutive models capturing the mechanical response of anisotropic brittle solids displaying progressive anisotropic damage. We train the constitutive models on data obtained from the analysis of a volume element of a material of interest; the data is generated by a constitutive model for braided composites, displaying a complex anisotropic damage evolution progressively transitioning from transversely isotropic to orthotropic. Training involves imposing six-dimensional random strain histories on the physical model and recording the histories of stress, strain and homogenised stiffness matrix of the material, obtained by a set of linear perturbation analyses. Supervised machine learning and dimensionality reduction are applied to the data and a structure for a surrogate model is proposed. The surrogate predicts the evolution of the stiffness of the solid consequent to an arbitrary imposed six-dimensional strain increment, thereby calculating the corresponding increment in stress. The model displays high accuracy and is able to reproduce the homogenised material's response via simple neural networks.</p></div>\",\"PeriodicalId\":34525,\"journal\":{\"name\":\"Composites Part C Open Access\",\"volume\":\"15 \",\"pages\":\"Article 100501\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666682024000707/pdfft?md5=1e4a9221a3a6f168ae6efc063767f0fb&pid=1-s2.0-S2666682024000707-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composites Part C Open Access\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666682024000707\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part C Open Access","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666682024000707","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

摘要

我们提出并演示了一个计算框架,用于获得数据驱动的代用构成模型,以捕捉显示渐进各向异性损伤的各向异性脆性固体的机械响应。我们通过分析相关材料的体积元素获得的数据来训练构成模型;这些数据由编织复合材料的构成模型生成,显示了从横向各向同性逐步过渡到正交各向同性的复杂各向异性损伤演化。训练包括对物理模型施加六维随机应变历史,并记录材料的应力、应变和均质化刚度矩阵的历史,这些都是通过一组线性扰动分析获得的。对数据进行有监督的机器学习和降维处理,并提出代用模型的结构。代用模型可预测任意施加六维应变增量后固体刚度的演变,从而计算出相应的应力增量。该模型精度很高,能够通过简单的神经网络再现均质材料的响应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data-driven constitutive models for brittle solids displaying progressive anisotropic damage

We propose and demonstrate a computational framework to obtain data-driven surrogate constitutive models capturing the mechanical response of anisotropic brittle solids displaying progressive anisotropic damage. We train the constitutive models on data obtained from the analysis of a volume element of a material of interest; the data is generated by a constitutive model for braided composites, displaying a complex anisotropic damage evolution progressively transitioning from transversely isotropic to orthotropic. Training involves imposing six-dimensional random strain histories on the physical model and recording the histories of stress, strain and homogenised stiffness matrix of the material, obtained by a set of linear perturbation analyses. Supervised machine learning and dimensionality reduction are applied to the data and a structure for a surrogate model is proposed. The surrogate predicts the evolution of the stiffness of the solid consequent to an arbitrary imposed six-dimensional strain increment, thereby calculating the corresponding increment in stress. The model displays high accuracy and is able to reproduce the homogenised material's response via simple neural networks.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Composites Part C Open Access
Composites Part C Open Access Engineering-Mechanical Engineering
CiteScore
8.60
自引率
2.40%
发文量
96
审稿时长
55 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信