{"title":"采用混合 MMC 的直流电网直流故障电流清除协调控制策略","authors":"","doi":"10.1016/j.ijepes.2024.110189","DOIUrl":null,"url":null,"abstract":"<div><p>For DC grid based on the hybrid modular multilevel converter (MMC), the traditional DC fault current clearance scheme takes a long time and greatly affects the active power transmission. A novel DC fault current clearance coordinated control strategy is proposed, which can quickly interrupt the fault current and reduce the impact of DC fault on the DC grid and AC system. For fault-line connected MMC (FLMMC), a negative DC voltage control is employed, which can improve the current attenuation speed and ensure reliable fault isolation. For non-fault-line connected MMC (NFLMMC), the active current-limiting control (ACLC) based on the virtual reactor is adopted, which can reduce the current flow to the fault location and further shorten fault isolation time. To reduce the impact on the AC system during the DC fault, a short-time active power support control is designed. Finally, a four-terminal DC grid simulation model is built based on the RT-LAB OP5600 real-time digital simulation platform. The simulation results show that the proposed coordinated control strategy for the DC grid can quickly clear DC fault current, shorten DC fault isolation time, and strengthen active power support capability.</p></div>","PeriodicalId":50326,"journal":{"name":"International Journal of Electrical Power & Energy Systems","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0142061524004101/pdfft?md5=82d708e3cf033d1b4e4858024ac5b97f&pid=1-s2.0-S0142061524004101-main.pdf","citationCount":"0","resultStr":"{\"title\":\"DC fault current clearance coordinated control strategy for DC grid with hybrid MMC\",\"authors\":\"\",\"doi\":\"10.1016/j.ijepes.2024.110189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>For DC grid based on the hybrid modular multilevel converter (MMC), the traditional DC fault current clearance scheme takes a long time and greatly affects the active power transmission. A novel DC fault current clearance coordinated control strategy is proposed, which can quickly interrupt the fault current and reduce the impact of DC fault on the DC grid and AC system. For fault-line connected MMC (FLMMC), a negative DC voltage control is employed, which can improve the current attenuation speed and ensure reliable fault isolation. For non-fault-line connected MMC (NFLMMC), the active current-limiting control (ACLC) based on the virtual reactor is adopted, which can reduce the current flow to the fault location and further shorten fault isolation time. To reduce the impact on the AC system during the DC fault, a short-time active power support control is designed. Finally, a four-terminal DC grid simulation model is built based on the RT-LAB OP5600 real-time digital simulation platform. The simulation results show that the proposed coordinated control strategy for the DC grid can quickly clear DC fault current, shorten DC fault isolation time, and strengthen active power support capability.</p></div>\",\"PeriodicalId\":50326,\"journal\":{\"name\":\"International Journal of Electrical Power & Energy Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0142061524004101/pdfft?md5=82d708e3cf033d1b4e4858024ac5b97f&pid=1-s2.0-S0142061524004101-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Electrical Power & Energy Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0142061524004101\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical Power & Energy Systems","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142061524004101","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
DC fault current clearance coordinated control strategy for DC grid with hybrid MMC
For DC grid based on the hybrid modular multilevel converter (MMC), the traditional DC fault current clearance scheme takes a long time and greatly affects the active power transmission. A novel DC fault current clearance coordinated control strategy is proposed, which can quickly interrupt the fault current and reduce the impact of DC fault on the DC grid and AC system. For fault-line connected MMC (FLMMC), a negative DC voltage control is employed, which can improve the current attenuation speed and ensure reliable fault isolation. For non-fault-line connected MMC (NFLMMC), the active current-limiting control (ACLC) based on the virtual reactor is adopted, which can reduce the current flow to the fault location and further shorten fault isolation time. To reduce the impact on the AC system during the DC fault, a short-time active power support control is designed. Finally, a four-terminal DC grid simulation model is built based on the RT-LAB OP5600 real-time digital simulation platform. The simulation results show that the proposed coordinated control strategy for the DC grid can quickly clear DC fault current, shorten DC fault isolation time, and strengthen active power support capability.
期刊介绍:
The journal covers theoretical developments in electrical power and energy systems and their applications. The coverage embraces: generation and network planning; reliability; long and short term operation; expert systems; neural networks; object oriented systems; system control centres; database and information systems; stock and parameter estimation; system security and adequacy; network theory, modelling and computation; small and large system dynamics; dynamic model identification; on-line control including load and switching control; protection; distribution systems; energy economics; impact of non-conventional systems; and man-machine interfaces.
As well as original research papers, the journal publishes short contributions, book reviews and conference reports. All papers are peer-reviewed by at least two referees.