利用跨自由液膜微电解质萃取技术预富集纳米塑料

IF 5.2 Q1 CHEMISTRY, ANALYTICAL
Muhandiramge Ranasinghe, Michael C. Breadmore, Fernando Maya
{"title":"利用跨自由液膜微电解质萃取技术预富集纳米塑料","authors":"Muhandiramge Ranasinghe,&nbsp;Michael C. Breadmore,&nbsp;Fernando Maya","doi":"10.1016/j.sampre.2024.100125","DOIUrl":null,"url":null,"abstract":"<div><p>Asymmetric micro-electromembrane extraction (µ-EME) based on a free liquid membrane has been evaluated for the preconcentration of nanoplastics. A conical unit (200 µL micropipette tip) enabled the simple and reproducible formation of the required three-phase extraction system consisting of a donor solution (150 µL sample/standard solution), free liquid membrane (FLM; 10 µL 1-pentanol), and an acceptor solution (5 µL of 5 mM phosphate buffer, pH 10.7). After µ-EME, nanoplastics transferred across the FLM into the acceptor solution were quantified using capillary zone electrophoresis with diode array detection. Enrichment factors &gt;20 and extraction recoveries &gt;70 % were achieved for nanoplastics concentrated at 500 V during 5 min. The limit of detection (LOD, S/<em>N</em> = 3) and limit of quantification (LOQ, S/<em>N</em> = 10) of the method using 200 nm sulphonated polystyrene particles as model nanoplastics were 6.00×10<sup>−4</sup>% (w/v) and 2.00×10<sup>−3</sup>% (w/v), respectively. Intraday (<em>n</em> = 6) and interday (<em>n</em> = 6) repeatability%RSD for 5.5 × 10<sup>−3</sup>% (w/v) nanoplastics were 8.5 % and 7.2 %, respectively. µ-EME enabled an efficient sample matrix clean-up and preconcentration of nanoplastics spiked in tea sample matrices. Nanoplastics preconcentrated through the FLM for black tea resulted in an enrichment factor of 20±3.6 (<em>n</em> = 3), with complete sample matrix removal of UV absorbing compounds.</p></div>","PeriodicalId":100052,"journal":{"name":"Advances in Sample Preparation","volume":null,"pages":null},"PeriodicalIF":5.2000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S277258202400024X/pdfft?md5=36f4203335e30657d3ad7a335a9e9e09&pid=1-s2.0-S277258202400024X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Preconcentration of nanoplastics using micro-electromembrane extraction across free liquid membranes\",\"authors\":\"Muhandiramge Ranasinghe,&nbsp;Michael C. Breadmore,&nbsp;Fernando Maya\",\"doi\":\"10.1016/j.sampre.2024.100125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Asymmetric micro-electromembrane extraction (µ-EME) based on a free liquid membrane has been evaluated for the preconcentration of nanoplastics. A conical unit (200 µL micropipette tip) enabled the simple and reproducible formation of the required three-phase extraction system consisting of a donor solution (150 µL sample/standard solution), free liquid membrane (FLM; 10 µL 1-pentanol), and an acceptor solution (5 µL of 5 mM phosphate buffer, pH 10.7). After µ-EME, nanoplastics transferred across the FLM into the acceptor solution were quantified using capillary zone electrophoresis with diode array detection. Enrichment factors &gt;20 and extraction recoveries &gt;70 % were achieved for nanoplastics concentrated at 500 V during 5 min. The limit of detection (LOD, S/<em>N</em> = 3) and limit of quantification (LOQ, S/<em>N</em> = 10) of the method using 200 nm sulphonated polystyrene particles as model nanoplastics were 6.00×10<sup>−4</sup>% (w/v) and 2.00×10<sup>−3</sup>% (w/v), respectively. Intraday (<em>n</em> = 6) and interday (<em>n</em> = 6) repeatability%RSD for 5.5 × 10<sup>−3</sup>% (w/v) nanoplastics were 8.5 % and 7.2 %, respectively. µ-EME enabled an efficient sample matrix clean-up and preconcentration of nanoplastics spiked in tea sample matrices. Nanoplastics preconcentrated through the FLM for black tea resulted in an enrichment factor of 20±3.6 (<em>n</em> = 3), with complete sample matrix removal of UV absorbing compounds.</p></div>\",\"PeriodicalId\":100052,\"journal\":{\"name\":\"Advances in Sample Preparation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S277258202400024X/pdfft?md5=36f4203335e30657d3ad7a335a9e9e09&pid=1-s2.0-S277258202400024X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Sample Preparation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S277258202400024X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Sample Preparation","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S277258202400024X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

对基于自由液膜的不对称微电解质膜萃取(µ-EME)进行了评估,用于纳米塑料的预浓缩。锥形装置(200 µL 微量移液器吸头)能够简单且可重复地形成所需的三相萃取系统,该系统由供体溶液(150 µL 样品/标准溶液)、自由液膜(FLM;10 µL 1-戊醇)和受体溶液(5 µL 5 mM 磷酸盐缓冲液,pH 10.7)组成。µ-EME后,采用二极管阵列检测的毛细管区带电泳法对通过FLM转移到受体溶液中的纳米塑料进行定量。纳米塑料在 500 V 的电压下浓缩 5 分钟后,富集因子为 20,萃取回收率为 70%。以 200 nm 磺化聚苯乙烯颗粒为模型纳米塑料,该方法的检出限(LOD,S/N = 3)和定量限(LOQ,S/N = 10)分别为 6.00×10-4% (w/v) 和 2.00×10-3% (w/v)。5.5 × 10-3%(w/v)纳米塑料的日内(n = 6)和日间(n = 6)重复性%RSD 分别为 8.5 % 和 7.2 %。µ-EME能够高效地净化样品基质并预浓缩茶叶样品基质中添加的纳米塑料。通过 FLM 对红茶中的纳米塑料进行预浓缩,富集因子为 20±3.6(n = 3),样品基质中的紫外线吸收化合物被完全去除。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Preconcentration of nanoplastics using micro-electromembrane extraction across free liquid membranes

Preconcentration of nanoplastics using micro-electromembrane extraction across free liquid membranes

Asymmetric micro-electromembrane extraction (µ-EME) based on a free liquid membrane has been evaluated for the preconcentration of nanoplastics. A conical unit (200 µL micropipette tip) enabled the simple and reproducible formation of the required three-phase extraction system consisting of a donor solution (150 µL sample/standard solution), free liquid membrane (FLM; 10 µL 1-pentanol), and an acceptor solution (5 µL of 5 mM phosphate buffer, pH 10.7). After µ-EME, nanoplastics transferred across the FLM into the acceptor solution were quantified using capillary zone electrophoresis with diode array detection. Enrichment factors >20 and extraction recoveries >70 % were achieved for nanoplastics concentrated at 500 V during 5 min. The limit of detection (LOD, S/N = 3) and limit of quantification (LOQ, S/N = 10) of the method using 200 nm sulphonated polystyrene particles as model nanoplastics were 6.00×10−4% (w/v) and 2.00×10−3% (w/v), respectively. Intraday (n = 6) and interday (n = 6) repeatability%RSD for 5.5 × 10−3% (w/v) nanoplastics were 8.5 % and 7.2 %, respectively. µ-EME enabled an efficient sample matrix clean-up and preconcentration of nanoplastics spiked in tea sample matrices. Nanoplastics preconcentrated through the FLM for black tea resulted in an enrichment factor of 20±3.6 (n = 3), with complete sample matrix removal of UV absorbing compounds.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信