Rasch 小测验模型的渐近正确人员拟合 z 统计量。

IF 2.9 2区 心理学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Zhongtian Lin, Tao Jiang, Frank Rijmen, Paul Van Wamelen
{"title":"Rasch 小测验模型的渐近正确人员拟合 z 统计量。","authors":"Zhongtian Lin, Tao Jiang, Frank Rijmen, Paul Van Wamelen","doi":"10.1007/s11336-024-09997-y","DOIUrl":null,"url":null,"abstract":"<p><p>A well-known person fit statistic in the item response theory (IRT) literature is the <math><msub><mi>l</mi> <mi>z</mi></msub> </math> statistic (Drasgow et al. in Br J Math Stat Psychol 38(1):67-86, 1985). Snijders (Psychometrika 66(3):331-342, 2001) derived <math><mmultiscripts><mi>l</mi> <mrow><mi>z</mi></mrow> <mrow><mrow></mrow> <mo>∗</mo></mrow> </mmultiscripts> </math> , which is the asymptotically correct version of <math><msub><mi>l</mi> <mi>z</mi></msub> </math> when the ability parameter is estimated. However, both statistics and other extensions later developed concern either only the unidimensional IRT models or multidimensional models that require a joint estimate of latent traits across all the dimensions. Considering a marginalized maximum likelihood ability estimator, this paper proposes <math><msub><mi>l</mi> <mrow><mi>zt</mi></mrow> </msub> </math> and <math><mmultiscripts><mi>l</mi> <mrow><mi>zt</mi></mrow> <mrow><mrow></mrow> <mo>∗</mo></mrow> </mmultiscripts> </math> , which are extensions of <math><msub><mi>l</mi> <mi>z</mi></msub> </math> and <math><mmultiscripts><mi>l</mi> <mrow><mi>z</mi></mrow> <mrow><mrow></mrow> <mo>∗</mo></mrow> </mmultiscripts> </math> , respectively, for the Rasch testlet model. The computation of <math><mmultiscripts><mi>l</mi> <mrow><mi>zt</mi></mrow> <mrow><mrow></mrow> <mo>∗</mo></mrow> </mmultiscripts> </math> relies on several extensions of the Lord-Wingersky algorithm (1984) that are additional contributions of this paper. Simulation results show that <math><mmultiscripts><mi>l</mi> <mrow><mi>zt</mi></mrow> <mrow><mrow></mrow> <mo>∗</mo></mrow> </mmultiscripts> </math> has close-to-nominal Type I error rates and satisfactory power for detecting aberrant responses. For unidimensional models, <math><msub><mi>l</mi> <mrow><mi>zt</mi></mrow> </msub> </math> and <math><mmultiscripts><mi>l</mi> <mrow><mi>zt</mi></mrow> <mrow><mrow></mrow> <mo>∗</mo></mrow> </mmultiscripts> </math> reduce to <math><msub><mi>l</mi> <mi>z</mi></msub> </math> and <math><mmultiscripts><mi>l</mi> <mrow><mi>z</mi></mrow> <mrow><mrow></mrow> <mo>∗</mo></mrow> </mmultiscripts> </math> , respectively, and therefore allows for the evaluation of person fit with a wider range of IRT models. A real data application is presented to show the utility of the proposed statistics for a test with an underlying structure that consists of both the traditional unidimensional component and the Rasch testlet component.</p>","PeriodicalId":54534,"journal":{"name":"Psychometrika","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotically Correct Person Fit z-Statistics For the Rasch Testlet Model.\",\"authors\":\"Zhongtian Lin, Tao Jiang, Frank Rijmen, Paul Van Wamelen\",\"doi\":\"10.1007/s11336-024-09997-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A well-known person fit statistic in the item response theory (IRT) literature is the <math><msub><mi>l</mi> <mi>z</mi></msub> </math> statistic (Drasgow et al. in Br J Math Stat Psychol 38(1):67-86, 1985). Snijders (Psychometrika 66(3):331-342, 2001) derived <math><mmultiscripts><mi>l</mi> <mrow><mi>z</mi></mrow> <mrow><mrow></mrow> <mo>∗</mo></mrow> </mmultiscripts> </math> , which is the asymptotically correct version of <math><msub><mi>l</mi> <mi>z</mi></msub> </math> when the ability parameter is estimated. However, both statistics and other extensions later developed concern either only the unidimensional IRT models or multidimensional models that require a joint estimate of latent traits across all the dimensions. Considering a marginalized maximum likelihood ability estimator, this paper proposes <math><msub><mi>l</mi> <mrow><mi>zt</mi></mrow> </msub> </math> and <math><mmultiscripts><mi>l</mi> <mrow><mi>zt</mi></mrow> <mrow><mrow></mrow> <mo>∗</mo></mrow> </mmultiscripts> </math> , which are extensions of <math><msub><mi>l</mi> <mi>z</mi></msub> </math> and <math><mmultiscripts><mi>l</mi> <mrow><mi>z</mi></mrow> <mrow><mrow></mrow> <mo>∗</mo></mrow> </mmultiscripts> </math> , respectively, for the Rasch testlet model. The computation of <math><mmultiscripts><mi>l</mi> <mrow><mi>zt</mi></mrow> <mrow><mrow></mrow> <mo>∗</mo></mrow> </mmultiscripts> </math> relies on several extensions of the Lord-Wingersky algorithm (1984) that are additional contributions of this paper. Simulation results show that <math><mmultiscripts><mi>l</mi> <mrow><mi>zt</mi></mrow> <mrow><mrow></mrow> <mo>∗</mo></mrow> </mmultiscripts> </math> has close-to-nominal Type I error rates and satisfactory power for detecting aberrant responses. For unidimensional models, <math><msub><mi>l</mi> <mrow><mi>zt</mi></mrow> </msub> </math> and <math><mmultiscripts><mi>l</mi> <mrow><mi>zt</mi></mrow> <mrow><mrow></mrow> <mo>∗</mo></mrow> </mmultiscripts> </math> reduce to <math><msub><mi>l</mi> <mi>z</mi></msub> </math> and <math><mmultiscripts><mi>l</mi> <mrow><mi>z</mi></mrow> <mrow><mrow></mrow> <mo>∗</mo></mrow> </mmultiscripts> </math> , respectively, and therefore allows for the evaluation of person fit with a wider range of IRT models. A real data application is presented to show the utility of the proposed statistics for a test with an underlying structure that consists of both the traditional unidimensional component and the Rasch testlet component.</p>\",\"PeriodicalId\":54534,\"journal\":{\"name\":\"Psychometrika\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Psychometrika\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1007/s11336-024-09997-y\",\"RegionNum\":2,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychometrika","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1007/s11336-024-09997-y","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

在项目反应理论(IRT)文献中,一个著名的拟合统计量是 l z 统计量(Drasgow 等人,载于 Br J Math Stat Psychol 38(1):67-86,1985 年)。Snijders(Psychometrika 66(3):331-342,2001)推导出了 l z ∗,这是能力参数估计时 l z 的渐近正确版本。然而,这两个统计量和后来开发的其他扩展都只涉及单维 IRT 模型或多维模型,后者需要对所有维度的潜在特质进行联合估计。考虑到边际最大似然能力估计器,本文提出了 l zt 和 l zt ∗,它们分别是 l z 和 l z ∗ 的扩展,适用于 Rasch 小测验模型。l zt ∗ 的计算依赖于 Lord-Wingersky 算法(1984 年)的几个扩展,这是本文的额外贡献。模拟结果表明,l zt ∗ 具有接近正常的 I 类错误率和令人满意的异常反应检测能力。对于单维模型,l zt 和 l zt ∗ 分别简化为 l z 和 l z ∗,因此可以对更广泛的 IRT 模型进行拟合评估。本文介绍了一个真实的数据应用,以展示所提出的统计方法在一个测试中的实用性,该测试的基本结构由传统的单维部分和 Rasch 小测试部分组成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Asymptotically Correct Person Fit z-Statistics For the Rasch Testlet Model.

Asymptotically Correct Person Fit z-Statistics For the Rasch Testlet Model.

A well-known person fit statistic in the item response theory (IRT) literature is the l z statistic (Drasgow et al. in Br J Math Stat Psychol 38(1):67-86, 1985). Snijders (Psychometrika 66(3):331-342, 2001) derived l z , which is the asymptotically correct version of l z when the ability parameter is estimated. However, both statistics and other extensions later developed concern either only the unidimensional IRT models or multidimensional models that require a joint estimate of latent traits across all the dimensions. Considering a marginalized maximum likelihood ability estimator, this paper proposes l zt and l zt , which are extensions of l z and l z , respectively, for the Rasch testlet model. The computation of l zt relies on several extensions of the Lord-Wingersky algorithm (1984) that are additional contributions of this paper. Simulation results show that l zt has close-to-nominal Type I error rates and satisfactory power for detecting aberrant responses. For unidimensional models, l zt and l zt reduce to l z and l z , respectively, and therefore allows for the evaluation of person fit with a wider range of IRT models. A real data application is presented to show the utility of the proposed statistics for a test with an underlying structure that consists of both the traditional unidimensional component and the Rasch testlet component.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Psychometrika
Psychometrika 数学-数学跨学科应用
CiteScore
4.40
自引率
10.00%
发文量
72
审稿时长
>12 weeks
期刊介绍: The journal Psychometrika is devoted to the advancement of theory and methodology for behavioral data in psychology, education and the social and behavioral sciences generally. Its coverage is offered in two sections: Theory and Methods (T& M), and Application Reviews and Case Studies (ARCS). T&M articles present original research and reviews on the development of quantitative models, statistical methods, and mathematical techniques for evaluating data from psychology, the social and behavioral sciences and related fields. Application Reviews can be integrative, drawing together disparate methodologies for applications, or comparative and evaluative, discussing advantages and disadvantages of one or more methodologies in applications. Case Studies highlight methodology that deepens understanding of substantive phenomena through more informative data analysis, or more elegant data description.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信