Cameron X Villarreal, Xin Shen, Ahmad A Alhulail, Nicholas M Buffo, Xiaopeng Zhou, Evan Pogue, Ali Caglar Özen, Mark Chiew, Stephen Sawiak, Uzay Emir, Deva D Chan
{"title":"加速 PETALUTE 核磁共振成像序列,用于在 3T 下活体量化人体关节软骨中的钠含量。","authors":"Cameron X Villarreal, Xin Shen, Ahmad A Alhulail, Nicholas M Buffo, Xiaopeng Zhou, Evan Pogue, Ali Caglar Özen, Mark Chiew, Stephen Sawiak, Uzay Emir, Deva D Chan","doi":"10.1007/s00256-024-04774-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>In this work, we evaluate the sodium magnetic resonance imaging (MRI) capabilities of a three-dimensional (3D) dual-echo ultrashort echo time (UTE) sequence with a novel rosette petal trajectory (PETALUTE), in comparison to the 3D density-adapted (DA) radial spokes UTE sequence in human articular cartilage in the knee.</p><p><strong>Materials and methods: </strong>We scanned five healthy subjects using a 3D dual-echo PETALUTE acquisition and two comparable implementations of 3D DA-radial spokes acquisitions, one matching the number of k-space projections (Radial - Matched Spokes) and the other matching the total number of samples (Radial - Matched Samples) acquired in k-space.</p><p><strong>Results: </strong>The PETALUTE acquisition enabled equivalent sodium quantification in articular cartilage volumes of interest (168.8 ± 29.9 mM, mean ± standard deviation) to those derived from the 3D radial acquisitions (171.62 ± 28.7 mM and 149.8 ± 22.2 mM, respectively). We achieved a 41% shorter scan time of 2:06 for 3D PETALUTE, compared to 3:36 for 3D radial acquisitions. We also evaluated the feasibility of further acceleration of the PETALUTE sequence through retrospective compressed sensing with 2 × and 4 × acceleration of the first echo and showed structural similarity of 0.89 ± 0.03 and 0.87 ± 0.03 when compared to non-retrospectively accelerated reconstruction.</p><p><strong>Conclusion: </strong>We demonstrate improved scan time with equivalent performance using a 3D dual-echo PETALUTE sequence compared to the 3D DA-radial sequence for sodium MRI of articular cartilage.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An accelerated PETALUTE MRI sequence for in vivo quantification of sodium content in human articular cartilage at 3T.\",\"authors\":\"Cameron X Villarreal, Xin Shen, Ahmad A Alhulail, Nicholas M Buffo, Xiaopeng Zhou, Evan Pogue, Ali Caglar Özen, Mark Chiew, Stephen Sawiak, Uzay Emir, Deva D Chan\",\"doi\":\"10.1007/s00256-024-04774-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>In this work, we evaluate the sodium magnetic resonance imaging (MRI) capabilities of a three-dimensional (3D) dual-echo ultrashort echo time (UTE) sequence with a novel rosette petal trajectory (PETALUTE), in comparison to the 3D density-adapted (DA) radial spokes UTE sequence in human articular cartilage in the knee.</p><p><strong>Materials and methods: </strong>We scanned five healthy subjects using a 3D dual-echo PETALUTE acquisition and two comparable implementations of 3D DA-radial spokes acquisitions, one matching the number of k-space projections (Radial - Matched Spokes) and the other matching the total number of samples (Radial - Matched Samples) acquired in k-space.</p><p><strong>Results: </strong>The PETALUTE acquisition enabled equivalent sodium quantification in articular cartilage volumes of interest (168.8 ± 29.9 mM, mean ± standard deviation) to those derived from the 3D radial acquisitions (171.62 ± 28.7 mM and 149.8 ± 22.2 mM, respectively). We achieved a 41% shorter scan time of 2:06 for 3D PETALUTE, compared to 3:36 for 3D radial acquisitions. We also evaluated the feasibility of further acceleration of the PETALUTE sequence through retrospective compressed sensing with 2 × and 4 × acceleration of the first echo and showed structural similarity of 0.89 ± 0.03 and 0.87 ± 0.03 when compared to non-retrospectively accelerated reconstruction.</p><p><strong>Conclusion: </strong>We demonstrate improved scan time with equivalent performance using a 3D dual-echo PETALUTE sequence compared to the 3D DA-radial sequence for sodium MRI of articular cartilage.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00256-024-04774-5\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00256-024-04774-5","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
An accelerated PETALUTE MRI sequence for in vivo quantification of sodium content in human articular cartilage at 3T.
Objective: In this work, we evaluate the sodium magnetic resonance imaging (MRI) capabilities of a three-dimensional (3D) dual-echo ultrashort echo time (UTE) sequence with a novel rosette petal trajectory (PETALUTE), in comparison to the 3D density-adapted (DA) radial spokes UTE sequence in human articular cartilage in the knee.
Materials and methods: We scanned five healthy subjects using a 3D dual-echo PETALUTE acquisition and two comparable implementations of 3D DA-radial spokes acquisitions, one matching the number of k-space projections (Radial - Matched Spokes) and the other matching the total number of samples (Radial - Matched Samples) acquired in k-space.
Results: The PETALUTE acquisition enabled equivalent sodium quantification in articular cartilage volumes of interest (168.8 ± 29.9 mM, mean ± standard deviation) to those derived from the 3D radial acquisitions (171.62 ± 28.7 mM and 149.8 ± 22.2 mM, respectively). We achieved a 41% shorter scan time of 2:06 for 3D PETALUTE, compared to 3:36 for 3D radial acquisitions. We also evaluated the feasibility of further acceleration of the PETALUTE sequence through retrospective compressed sensing with 2 × and 4 × acceleration of the first echo and showed structural similarity of 0.89 ± 0.03 and 0.87 ± 0.03 when compared to non-retrospectively accelerated reconstruction.
Conclusion: We demonstrate improved scan time with equivalent performance using a 3D dual-echo PETALUTE sequence compared to the 3D DA-radial sequence for sodium MRI of articular cartilage.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.