发育中的人类大脑皮层中星形胶质细胞标记的空间-时间表示。

IF 2.7 3区 医学 Q1 ANATOMY & MORPHOLOGY
Brain Structure & Function Pub Date : 2024-12-01 Epub Date: 2024-08-17 DOI:10.1007/s00429-024-02850-z
A Kharlamova, Yu Krivova, A Proshchina, O Godovalova, D Otlyga, E Andreeva, M Shachina, E Grushetskaya, S Saveliev
{"title":"发育中的人类大脑皮层中星形胶质细胞标记的空间-时间表示。","authors":"A Kharlamova, Yu Krivova, A Proshchina, O Godovalova, D Otlyga, E Andreeva, M Shachina, E Grushetskaya, S Saveliev","doi":"10.1007/s00429-024-02850-z","DOIUrl":null,"url":null,"abstract":"<p><p>Specific spatiotemporal patterns of the normal glial differentiation during human brain development have not been thoroughly studied. Immunomorphological studies on postmortem material have remained a basic method for human neurodevelopmental studies so far. The main problem for the immunohistochemical research of astrogliogenesis is that now there are no universal astrocyte markers, that characterize the whole mature astrocyte population or precursors at each stage of development. To define the general course of astrogliogenesis in the developing human cortex, 25 fetal autopsy samples at the stages from eight postconceptional weeks to birth were collected for the immunomorphological analysis. Spatiotemporal immunoreactivity patterns with the panel of markers (ALDH1L1, GFAP, S100, SOX9, and Olig-2), related to glial differentiation were described and compared. The early S100 + cell population of ventral origin was described as well. This S100 + cell distribution deviated from the SOX9-immunoreactivity pattern and was similar to the Olig-2 one. In the given material the dorsal gliogenic wave was characterized by ALDH1L1-, GFAP-, and S100-immunoreactivity manifestation in the dorsal proliferative niche at the end of the early fetal period. The time point of dorsal astrogliogenesis was agreed upon not later than the 17 GW stage. ALDH1L1 + , GFAP + , S100 + , and SOX9 + cell expansion patterns from the ventricular and subventricular zones to the intermediate zone, subplate, and cortical plate were described at the end of early fetal, middle, and late fetal periods. The ALDH1L1-, GFAP-, and S100-immunoreactivity patterns were shown to be not completely identical.</p>","PeriodicalId":9145,"journal":{"name":"Brain Structure & Function","volume":" ","pages":"2385-2403"},"PeriodicalIF":2.7000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatial-temporal representation of the astroglial markers in the developing human cortex.\",\"authors\":\"A Kharlamova, Yu Krivova, A Proshchina, O Godovalova, D Otlyga, E Andreeva, M Shachina, E Grushetskaya, S Saveliev\",\"doi\":\"10.1007/s00429-024-02850-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Specific spatiotemporal patterns of the normal glial differentiation during human brain development have not been thoroughly studied. Immunomorphological studies on postmortem material have remained a basic method for human neurodevelopmental studies so far. The main problem for the immunohistochemical research of astrogliogenesis is that now there are no universal astrocyte markers, that characterize the whole mature astrocyte population or precursors at each stage of development. To define the general course of astrogliogenesis in the developing human cortex, 25 fetal autopsy samples at the stages from eight postconceptional weeks to birth were collected for the immunomorphological analysis. Spatiotemporal immunoreactivity patterns with the panel of markers (ALDH1L1, GFAP, S100, SOX9, and Olig-2), related to glial differentiation were described and compared. The early S100 + cell population of ventral origin was described as well. This S100 + cell distribution deviated from the SOX9-immunoreactivity pattern and was similar to the Olig-2 one. In the given material the dorsal gliogenic wave was characterized by ALDH1L1-, GFAP-, and S100-immunoreactivity manifestation in the dorsal proliferative niche at the end of the early fetal period. The time point of dorsal astrogliogenesis was agreed upon not later than the 17 GW stage. ALDH1L1 + , GFAP + , S100 + , and SOX9 + cell expansion patterns from the ventricular and subventricular zones to the intermediate zone, subplate, and cortical plate were described at the end of early fetal, middle, and late fetal periods. The ALDH1L1-, GFAP-, and S100-immunoreactivity patterns were shown to be not completely identical.</p>\",\"PeriodicalId\":9145,\"journal\":{\"name\":\"Brain Structure & Function\",\"volume\":\" \",\"pages\":\"2385-2403\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Structure & Function\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00429-024-02850-z\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ANATOMY & MORPHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Structure & Function","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00429-024-02850-z","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/17 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

人类大脑发育过程中正常胶质分化的具体时空模式尚未得到深入研究。迄今为止,对尸体材料进行免疫形态学研究仍是人类神经发育研究的基本方法。星形胶质细胞发生的免疫组化研究面临的主要问题是,目前还没有通用的星形胶质细胞标记物来描述整个成熟星形胶质细胞群体或每个发育阶段的前体。为了确定人类大脑皮层发育过程中星形胶质细胞生成的一般过程,研究人员收集了 25 份从受孕后 8 周到出生前各阶段的胎儿尸检样本进行免疫形态学分析。对与神经胶质分化相关的标记物(ALDH1L1、GFAP、S100、SOX9和Olig-2)的时空免疫反应模式进行了描述和比较。此外,还描述了腹侧来源的早期 S100 + 细胞群。这种 S100 + 细胞分布与 SOX9 免疫反应模式不同,与 Olig-2 免疫反应模式相似。在给定的材料中,背侧神经胶质形成波的特征是在胎儿早期末期背侧增殖龛中出现 ALDH1L1-、GFAP-和 S100-免疫反应。背侧星形胶质细胞发生的时间点被认为不晚于 17 GW 阶段。在胎儿早期、中期和晚期,描述了ALDH1L1 +、GFAP +、S100 +和SOX9 +细胞从室管膜区和室管膜下区向中间区、亚板和皮质板扩展的模式。结果表明,ALDH1L1-、GFAP-和S100-免疫反应模式并不完全相同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Spatial-temporal representation of the astroglial markers in the developing human cortex.

Spatial-temporal representation of the astroglial markers in the developing human cortex.

Specific spatiotemporal patterns of the normal glial differentiation during human brain development have not been thoroughly studied. Immunomorphological studies on postmortem material have remained a basic method for human neurodevelopmental studies so far. The main problem for the immunohistochemical research of astrogliogenesis is that now there are no universal astrocyte markers, that characterize the whole mature astrocyte population or precursors at each stage of development. To define the general course of astrogliogenesis in the developing human cortex, 25 fetal autopsy samples at the stages from eight postconceptional weeks to birth were collected for the immunomorphological analysis. Spatiotemporal immunoreactivity patterns with the panel of markers (ALDH1L1, GFAP, S100, SOX9, and Olig-2), related to glial differentiation were described and compared. The early S100 + cell population of ventral origin was described as well. This S100 + cell distribution deviated from the SOX9-immunoreactivity pattern and was similar to the Olig-2 one. In the given material the dorsal gliogenic wave was characterized by ALDH1L1-, GFAP-, and S100-immunoreactivity manifestation in the dorsal proliferative niche at the end of the early fetal period. The time point of dorsal astrogliogenesis was agreed upon not later than the 17 GW stage. ALDH1L1 + , GFAP + , S100 + , and SOX9 + cell expansion patterns from the ventricular and subventricular zones to the intermediate zone, subplate, and cortical plate were described at the end of early fetal, middle, and late fetal periods. The ALDH1L1-, GFAP-, and S100-immunoreactivity patterns were shown to be not completely identical.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Brain Structure & Function
Brain Structure & Function 医学-解剖学与形态学
CiteScore
6.00
自引率
6.50%
发文量
168
审稿时长
8 months
期刊介绍: Brain Structure & Function publishes research that provides insight into brain structure−function relationships. Studies published here integrate data spanning from molecular, cellular, developmental, and systems architecture to the neuroanatomy of behavior and cognitive functions. Manuscripts with focus on the spinal cord or the peripheral nervous system are not accepted for publication. Manuscripts with focus on diseases, animal models of diseases, or disease-related mechanisms are only considered for publication, if the findings provide novel insight into the organization and mechanisms of normal brain structure and function.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信