Stephan F Steyn, Malie Rheeders, Francois P Viljoen, Linda Brand
{"title":"被动给药氟西汀可进入 FSL 大鼠的幼年大脑并降低抗氧化防御能力,但不会改变血清素的周转。","authors":"Stephan F Steyn, Malie Rheeders, Francois P Viljoen, Linda Brand","doi":"10.1186/s40360-024-00775-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Fluoxetine is present in breast milk, yet it is unclear to what extent it, or its active metabolite, norfluoxetine, reaches the brain of the infant and what the effects of such exposure on neurobiological processes are. We therefore aimed to quantify the concentration of passively administered fluoxetine and norfluoxetine in the whole brains of exposed Flinders sensitive line (FSL) offspring and establish their influence on serotonergic function and redox status.</p><p><strong>Methods: </strong>Adult FSL dams received fluoxetine (10 mg/kg/day), or placebo for fourteen days, beginning on postpartum day 04. Offspring were passively exposed to fluoxetine until postnatal day 18 and euthanized on postnatal day 22. Whole brain fluoxetine, norfluoxetine, serotonin (5-HT), 5-hydroxyindoleacetic acid (5-HIAA), and reduced (GSH) and oxidized glutathione (GSSG) concentrations were measured via liquid chromatography-mass spectrometry (LC-MS) analysis.</p><p><strong>Results: </strong>Whole-brain serotonin and 5-hydroxyindoleacetic acid concentrations, and serotonin turnover (5-HIAA/5-HT) were comparable between strains. Treatment-naïve FSL rats had lower GSH and higher GSSG whole-brain concentrations, relative to FRL controls, and an overall decreased GSH/GSSG ratio. Passively administered fluoxetine resulted in undetectable whole-brain concentrations, while norfluoxetine averaged 41.28 ± 6.47 ng/g. Serotonin turnover of FSL rats was unaffected by passively administered fluoxetine, while redox status (GSH/GSSG) was decreased.</p><p><strong>Conclusion: </strong>Our findings confirm that passively administered fluoxetine reaches the infant brain in the form of norfluoxetine and may manipulate processes of oxidative stress regulation. Further studies into the long-term bio-behavioural effects are however needed to effectively inform breast feeding mothers on the safety of antidepressant-use.</p>","PeriodicalId":9023,"journal":{"name":"BMC Pharmacology & Toxicology","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11330128/pdf/","citationCount":"0","resultStr":"{\"title\":\"Passively administered fluoxetine reaches the juvenile brain of FSL rats and reduces antioxidant defences, without altering serotonin turnover.\",\"authors\":\"Stephan F Steyn, Malie Rheeders, Francois P Viljoen, Linda Brand\",\"doi\":\"10.1186/s40360-024-00775-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Fluoxetine is present in breast milk, yet it is unclear to what extent it, or its active metabolite, norfluoxetine, reaches the brain of the infant and what the effects of such exposure on neurobiological processes are. We therefore aimed to quantify the concentration of passively administered fluoxetine and norfluoxetine in the whole brains of exposed Flinders sensitive line (FSL) offspring and establish their influence on serotonergic function and redox status.</p><p><strong>Methods: </strong>Adult FSL dams received fluoxetine (10 mg/kg/day), or placebo for fourteen days, beginning on postpartum day 04. Offspring were passively exposed to fluoxetine until postnatal day 18 and euthanized on postnatal day 22. Whole brain fluoxetine, norfluoxetine, serotonin (5-HT), 5-hydroxyindoleacetic acid (5-HIAA), and reduced (GSH) and oxidized glutathione (GSSG) concentrations were measured via liquid chromatography-mass spectrometry (LC-MS) analysis.</p><p><strong>Results: </strong>Whole-brain serotonin and 5-hydroxyindoleacetic acid concentrations, and serotonin turnover (5-HIAA/5-HT) were comparable between strains. Treatment-naïve FSL rats had lower GSH and higher GSSG whole-brain concentrations, relative to FRL controls, and an overall decreased GSH/GSSG ratio. Passively administered fluoxetine resulted in undetectable whole-brain concentrations, while norfluoxetine averaged 41.28 ± 6.47 ng/g. Serotonin turnover of FSL rats was unaffected by passively administered fluoxetine, while redox status (GSH/GSSG) was decreased.</p><p><strong>Conclusion: </strong>Our findings confirm that passively administered fluoxetine reaches the infant brain in the form of norfluoxetine and may manipulate processes of oxidative stress regulation. Further studies into the long-term bio-behavioural effects are however needed to effectively inform breast feeding mothers on the safety of antidepressant-use.</p>\",\"PeriodicalId\":9023,\"journal\":{\"name\":\"BMC Pharmacology & Toxicology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11330128/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Pharmacology & Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s40360-024-00775-1\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Pharmacology & Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40360-024-00775-1","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Passively administered fluoxetine reaches the juvenile brain of FSL rats and reduces antioxidant defences, without altering serotonin turnover.
Background: Fluoxetine is present in breast milk, yet it is unclear to what extent it, or its active metabolite, norfluoxetine, reaches the brain of the infant and what the effects of such exposure on neurobiological processes are. We therefore aimed to quantify the concentration of passively administered fluoxetine and norfluoxetine in the whole brains of exposed Flinders sensitive line (FSL) offspring and establish their influence on serotonergic function and redox status.
Methods: Adult FSL dams received fluoxetine (10 mg/kg/day), or placebo for fourteen days, beginning on postpartum day 04. Offspring were passively exposed to fluoxetine until postnatal day 18 and euthanized on postnatal day 22. Whole brain fluoxetine, norfluoxetine, serotonin (5-HT), 5-hydroxyindoleacetic acid (5-HIAA), and reduced (GSH) and oxidized glutathione (GSSG) concentrations were measured via liquid chromatography-mass spectrometry (LC-MS) analysis.
Results: Whole-brain serotonin and 5-hydroxyindoleacetic acid concentrations, and serotonin turnover (5-HIAA/5-HT) were comparable between strains. Treatment-naïve FSL rats had lower GSH and higher GSSG whole-brain concentrations, relative to FRL controls, and an overall decreased GSH/GSSG ratio. Passively administered fluoxetine resulted in undetectable whole-brain concentrations, while norfluoxetine averaged 41.28 ± 6.47 ng/g. Serotonin turnover of FSL rats was unaffected by passively administered fluoxetine, while redox status (GSH/GSSG) was decreased.
Conclusion: Our findings confirm that passively administered fluoxetine reaches the infant brain in the form of norfluoxetine and may manipulate processes of oxidative stress regulation. Further studies into the long-term bio-behavioural effects are however needed to effectively inform breast feeding mothers on the safety of antidepressant-use.
期刊介绍:
BMC Pharmacology and Toxicology is an open access, peer-reviewed journal that considers articles on all aspects of chemically defined therapeutic and toxic agents. The journal welcomes submissions from all fields of experimental and clinical pharmacology including clinical trials and toxicology.