{"title":"亚洲季风区夏季极端高温事件的预测变化","authors":"Reshmita Nath, Debashis Nath, Wen Chen","doi":"10.1038/s41612-024-00734-x","DOIUrl":null,"url":null,"abstract":"40% of global population, who resides in Asian monsoon region is at high risk from extreme hot summer events, which is expected to increase by 25%/30 years under RCP8.5 scenario. Using Community Earth System Model (CESM) Large-ensemble simulations we assess the relative contribution of external forcings and internal variability on hot extremes over South and East Asia. Climate change projects surface mean temperature to reach 2.0 °C and 5.0 °C by ~2050 and ~2100, respectively, making the region uninhabitable under exposed conditions. Internal variability will partly obscure anthropogenic warming over South and Southeast Asia; however, East Asia will experience a 4–6 fold rise in record breaking hot events in later periods. Nevertheless, beyond 2.35 °C warming internal variability will decrease over South Asia due to weaker albedo feedback on unforced internal variability. Our results contradict the existing hypothesis that warming will increase volatility in weather patterns everywhere, particularly the Asian monsoon regions.","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":" ","pages":"1-11"},"PeriodicalIF":8.5000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41612-024-00734-x.pdf","citationCount":"0","resultStr":"{\"title\":\"Projected changes in extreme hot summer events in Asian monsoon regions\",\"authors\":\"Reshmita Nath, Debashis Nath, Wen Chen\",\"doi\":\"10.1038/s41612-024-00734-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"40% of global population, who resides in Asian monsoon region is at high risk from extreme hot summer events, which is expected to increase by 25%/30 years under RCP8.5 scenario. Using Community Earth System Model (CESM) Large-ensemble simulations we assess the relative contribution of external forcings and internal variability on hot extremes over South and East Asia. Climate change projects surface mean temperature to reach 2.0 °C and 5.0 °C by ~2050 and ~2100, respectively, making the region uninhabitable under exposed conditions. Internal variability will partly obscure anthropogenic warming over South and Southeast Asia; however, East Asia will experience a 4–6 fold rise in record breaking hot events in later periods. Nevertheless, beyond 2.35 °C warming internal variability will decrease over South Asia due to weaker albedo feedback on unforced internal variability. Our results contradict the existing hypothesis that warming will increase volatility in weather patterns everywhere, particularly the Asian monsoon regions.\",\"PeriodicalId\":19438,\"journal\":{\"name\":\"npj Climate and Atmospheric Science\",\"volume\":\" \",\"pages\":\"1-11\"},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41612-024-00734-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Climate and Atmospheric Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.nature.com/articles/s41612-024-00734-x\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Climate and Atmospheric Science","FirstCategoryId":"89","ListUrlMain":"https://www.nature.com/articles/s41612-024-00734-x","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Projected changes in extreme hot summer events in Asian monsoon regions
40% of global population, who resides in Asian monsoon region is at high risk from extreme hot summer events, which is expected to increase by 25%/30 years under RCP8.5 scenario. Using Community Earth System Model (CESM) Large-ensemble simulations we assess the relative contribution of external forcings and internal variability on hot extremes over South and East Asia. Climate change projects surface mean temperature to reach 2.0 °C and 5.0 °C by ~2050 and ~2100, respectively, making the region uninhabitable under exposed conditions. Internal variability will partly obscure anthropogenic warming over South and Southeast Asia; however, East Asia will experience a 4–6 fold rise in record breaking hot events in later periods. Nevertheless, beyond 2.35 °C warming internal variability will decrease over South Asia due to weaker albedo feedback on unforced internal variability. Our results contradict the existing hypothesis that warming will increase volatility in weather patterns everywhere, particularly the Asian monsoon regions.
期刊介绍:
npj Climate and Atmospheric Science is an open-access journal encompassing the relevant physical, chemical, and biological aspects of atmospheric and climate science. The journal places particular emphasis on regional studies that unveil new insights into specific localities, including examinations of local atmospheric composition, such as aerosols.
The range of topics covered by the journal includes climate dynamics, climate variability, weather and climate prediction, climate change, ocean dynamics, weather extremes, air pollution, atmospheric chemistry (including aerosols), the hydrological cycle, and atmosphere–ocean and atmosphere–land interactions. The journal welcomes studies employing a diverse array of methods, including numerical and statistical modeling, the development and application of in situ observational techniques, remote sensing, and the development or evaluation of new reanalyses.