简单而有效:基于眼部环境,对 K+ 离子具有高选择性的 G 型四重水凝胶的超润滑性能

IF 6.3 1区 工程技术 Q1 ENGINEERING, MECHANICAL
Friction Pub Date : 2024-08-17 DOI:10.1007/s40544-024-0898-z
Hongdong Wang, Jian Wu, Kunpeng Wang, Yunjuan Su, Xiacong Zhang, Yuhong Liu, Jianhua Zhang
{"title":"简单而有效:基于眼部环境,对 K+ 离子具有高选择性的 G 型四重水凝胶的超润滑性能","authors":"Hongdong Wang, Jian Wu, Kunpeng Wang, Yunjuan Su, Xiacong Zhang, Yuhong Liu, Jianhua Zhang","doi":"10.1007/s40544-024-0898-z","DOIUrl":null,"url":null,"abstract":"<p>Hydrogels have been the subject of significant research in the field of friction due to their exceptional lubricating properties. In this study, the G-quadruplex hydrogel with high selectivity for K<sup>+</sup> ions was formed by introducing a mixture of G, 2-formylphenylboronic acid, and polyethylene glycol diamine into simulated artificial tears solution with high transparency, and an ultra-low coefficient of friction (COF) of about 0.004 was obtained based on the simulated ocular environment, thus achieving macroscopic superlubricity. In friction pairs simulating the ocular environment, to assess the frictional performance of the G-quadruplex hydrogel as both a lubricant and a friction pair based on the simulated ocular environment, we conducted experiments considering various factors such as concentration, sliding speed, and stress. Through these experiments, it was found that superlubricity was achieved when the G-quadruplex hydrogel was applied as lubricant or friction pair. This effect was attributed to the three-dimensional network structure and hydrophilicity of the hydrogel, which facilitated the formation of a highly bearing and flowing hydration layer, promoting macroscopic superlubricity. Compared to the G-quadruplex hydrogel with low concentration, the high concentration hydrogel (75 mM) exhibited increased mechanical strength and robustness in superlubricity. Combined with biocompatibility experiments, our synthesized G-quadruplex hydrogel has excellent biocompatibility and offers a novel approach to achieve superlubricity in ocular drug delivery.</p>","PeriodicalId":12442,"journal":{"name":"Friction","volume":"6 1","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simple and effective: Superlubricity behaviour of the G-quadruplex hydrogel with high selectivity for K+ ions based on the ocular environment\",\"authors\":\"Hongdong Wang, Jian Wu, Kunpeng Wang, Yunjuan Su, Xiacong Zhang, Yuhong Liu, Jianhua Zhang\",\"doi\":\"10.1007/s40544-024-0898-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Hydrogels have been the subject of significant research in the field of friction due to their exceptional lubricating properties. In this study, the G-quadruplex hydrogel with high selectivity for K<sup>+</sup> ions was formed by introducing a mixture of G, 2-formylphenylboronic acid, and polyethylene glycol diamine into simulated artificial tears solution with high transparency, and an ultra-low coefficient of friction (COF) of about 0.004 was obtained based on the simulated ocular environment, thus achieving macroscopic superlubricity. In friction pairs simulating the ocular environment, to assess the frictional performance of the G-quadruplex hydrogel as both a lubricant and a friction pair based on the simulated ocular environment, we conducted experiments considering various factors such as concentration, sliding speed, and stress. Through these experiments, it was found that superlubricity was achieved when the G-quadruplex hydrogel was applied as lubricant or friction pair. This effect was attributed to the three-dimensional network structure and hydrophilicity of the hydrogel, which facilitated the formation of a highly bearing and flowing hydration layer, promoting macroscopic superlubricity. Compared to the G-quadruplex hydrogel with low concentration, the high concentration hydrogel (75 mM) exhibited increased mechanical strength and robustness in superlubricity. Combined with biocompatibility experiments, our synthesized G-quadruplex hydrogel has excellent biocompatibility and offers a novel approach to achieve superlubricity in ocular drug delivery.</p>\",\"PeriodicalId\":12442,\"journal\":{\"name\":\"Friction\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Friction\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s40544-024-0898-z\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Friction","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40544-024-0898-z","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

由于水凝胶具有优异的润滑性能,因此一直是摩擦领域的重要研究课题。本研究将 G、2-甲酰基苯硼酸和聚乙二醇二胺的混合物引入高透明度的模拟人工泪液中,形成了对 K+ 离子具有高选择性的 G-四重水凝胶,并根据模拟眼部环境获得了约 0.004 的超低摩擦系数(COF),从而实现了宏观超润滑性。在模拟眼部环境的摩擦副中,为了评估 G-四重水凝胶作为润滑剂和基于模拟眼部环境的摩擦副的摩擦性能,我们进行了考虑浓度、滑动速度和应力等各种因素的实验。通过这些实验,我们发现当 G 型四元水凝胶用作润滑剂或摩擦副时,可实现超润滑性。这种效果归因于水凝胶的三维网络结构和亲水性,这有利于形成高度承载和流动的水合层,促进宏观超润滑性。与低浓度的 G-四重水凝胶相比,高浓度水凝胶(75 mM)在超润滑性方面表现出更高的机械强度和稳健性。结合生物相容性实验,我们合成的 G-四重水凝胶具有良好的生物相容性,为实现眼部给药的超润滑性提供了一种新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Simple and effective: Superlubricity behaviour of the G-quadruplex hydrogel with high selectivity for K+ ions based on the ocular environment

Simple and effective: Superlubricity behaviour of the G-quadruplex hydrogel with high selectivity for K+ ions based on the ocular environment

Hydrogels have been the subject of significant research in the field of friction due to their exceptional lubricating properties. In this study, the G-quadruplex hydrogel with high selectivity for K+ ions was formed by introducing a mixture of G, 2-formylphenylboronic acid, and polyethylene glycol diamine into simulated artificial tears solution with high transparency, and an ultra-low coefficient of friction (COF) of about 0.004 was obtained based on the simulated ocular environment, thus achieving macroscopic superlubricity. In friction pairs simulating the ocular environment, to assess the frictional performance of the G-quadruplex hydrogel as both a lubricant and a friction pair based on the simulated ocular environment, we conducted experiments considering various factors such as concentration, sliding speed, and stress. Through these experiments, it was found that superlubricity was achieved when the G-quadruplex hydrogel was applied as lubricant or friction pair. This effect was attributed to the three-dimensional network structure and hydrophilicity of the hydrogel, which facilitated the formation of a highly bearing and flowing hydration layer, promoting macroscopic superlubricity. Compared to the G-quadruplex hydrogel with low concentration, the high concentration hydrogel (75 mM) exhibited increased mechanical strength and robustness in superlubricity. Combined with biocompatibility experiments, our synthesized G-quadruplex hydrogel has excellent biocompatibility and offers a novel approach to achieve superlubricity in ocular drug delivery.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Friction
Friction Engineering-Mechanical Engineering
CiteScore
12.90
自引率
13.20%
发文量
324
审稿时长
13 weeks
期刊介绍: Friction is a peer-reviewed international journal for the publication of theoretical and experimental research works related to the friction, lubrication and wear. Original, high quality research papers and review articles on all aspects of tribology are welcome, including, but are not limited to, a variety of topics, such as: Friction: Origin of friction, Friction theories, New phenomena of friction, Nano-friction, Ultra-low friction, Molecular friction, Ultra-high friction, Friction at high speed, Friction at high temperature or low temperature, Friction at solid/liquid interfaces, Bio-friction, Adhesion, etc. Lubrication: Superlubricity, Green lubricants, Nano-lubrication, Boundary lubrication, Thin film lubrication, Elastohydrodynamic lubrication, Mixed lubrication, New lubricants, New additives, Gas lubrication, Solid lubrication, etc. Wear: Wear materials, Wear mechanism, Wear models, Wear in severe conditions, Wear measurement, Wear monitoring, etc. Surface Engineering: Surface texturing, Molecular films, Surface coatings, Surface modification, Bionic surfaces, etc. Basic Sciences: Tribology system, Principles of tribology, Thermodynamics of tribo-systems, Micro-fluidics, Thermal stability of tribo-systems, etc. Friction is an open access journal. It is published quarterly by Tsinghua University Press and Springer, and sponsored by the State Key Laboratory of Tribology (TsinghuaUniversity) and the Tribology Institute of Chinese Mechanical Engineering Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信