{"title":"四元单位球上的几何结构和切片正则莫比乌斯变换","authors":"Raul Quiroga-Barranco","doi":"10.1007/s00006-024-01343-w","DOIUrl":null,"url":null,"abstract":"<div><p>Building from ideas of hypercomplex analysis on the quaternionic unit ball, we introduce Hermitian, Riemannian and Kähler-like structures on the latter. These are built from the so-called regular Möbius transformations. Such geometric structures are shown to be natural generalizations of those from the complex setup. Our structures can be considered as more natural, from the hypercomplex viewpoint, than the usual quaternionic hyperbolic geometry. Furthermore, our constructions provide solutions to problems not achieved by hyper-Kähler and quaternion-Kähler geometries when applied to the quaternionic unit ball. We prove that the Riemannian metric obtained in this work yields the same tensor previously computed by Arcozzi–Sarfatti. However, our approach is completely geometric as opposed to the function theoretic methods of Arcozzi–Sarfatti.</p></div>","PeriodicalId":7330,"journal":{"name":"Advances in Applied Clifford Algebras","volume":"34 4","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00006-024-01343-w.pdf","citationCount":"0","resultStr":"{\"title\":\"Geometric Structures on the Quaternionic Unit Ball and Slice Regular Möbius Transformations\",\"authors\":\"Raul Quiroga-Barranco\",\"doi\":\"10.1007/s00006-024-01343-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Building from ideas of hypercomplex analysis on the quaternionic unit ball, we introduce Hermitian, Riemannian and Kähler-like structures on the latter. These are built from the so-called regular Möbius transformations. Such geometric structures are shown to be natural generalizations of those from the complex setup. Our structures can be considered as more natural, from the hypercomplex viewpoint, than the usual quaternionic hyperbolic geometry. Furthermore, our constructions provide solutions to problems not achieved by hyper-Kähler and quaternion-Kähler geometries when applied to the quaternionic unit ball. We prove that the Riemannian metric obtained in this work yields the same tensor previously computed by Arcozzi–Sarfatti. However, our approach is completely geometric as opposed to the function theoretic methods of Arcozzi–Sarfatti.</p></div>\",\"PeriodicalId\":7330,\"journal\":{\"name\":\"Advances in Applied Clifford Algebras\",\"volume\":\"34 4\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00006-024-01343-w.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Applied Clifford Algebras\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00006-024-01343-w\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Clifford Algebras","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00006-024-01343-w","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Geometric Structures on the Quaternionic Unit Ball and Slice Regular Möbius Transformations
Building from ideas of hypercomplex analysis on the quaternionic unit ball, we introduce Hermitian, Riemannian and Kähler-like structures on the latter. These are built from the so-called regular Möbius transformations. Such geometric structures are shown to be natural generalizations of those from the complex setup. Our structures can be considered as more natural, from the hypercomplex viewpoint, than the usual quaternionic hyperbolic geometry. Furthermore, our constructions provide solutions to problems not achieved by hyper-Kähler and quaternion-Kähler geometries when applied to the quaternionic unit ball. We prove that the Riemannian metric obtained in this work yields the same tensor previously computed by Arcozzi–Sarfatti. However, our approach is completely geometric as opposed to the function theoretic methods of Arcozzi–Sarfatti.
期刊介绍:
Advances in Applied Clifford Algebras (AACA) publishes high-quality peer-reviewed research papers as well as expository and survey articles in the area of Clifford algebras and their applications to other branches of mathematics, physics, engineering, and related fields. The journal ensures rapid publication and is organized in six sections: Analysis, Differential Geometry and Dirac Operators, Mathematical Structures, Theoretical and Mathematical Physics, Applications, and Book Reviews.