用于给药应用的自愈合材料三维打印:前景、进展和展望

Q1 Computer Science
{"title":"用于给药应用的自愈合材料三维打印:前景、进展和展望","authors":"","doi":"10.1016/j.bprint.2024.e00353","DOIUrl":null,"url":null,"abstract":"<div><p>This article examines 3D-printed structures that have self-healing properties. Additive manufacturing, also known as additive printing or 3D printing, is a sophisticated and adaptable technology that enables rapid, on-demand manufacturing of solid items made through a construction process based on a virtual computer-aided design (CAD) model. A technique known as 3D printing (3DP) enables the rapid creation of complex geometric shapes with previously unimaginable precision and performance. However, the availability of tunable-quality materials, especially those developed for additive manufacturing, remains a barrier to the widespread use of 3DP technology. This may increase the lifetime and performance of structural elements and even enable the propagation of living tissues for use in biomedical applications, including organ printing. This study discusses and analyzes the most relevant findings from the recent publication of 3D printable and self-healing polymer materials, by providing a chemical and physical self-healing process that may be used in 3D printing, as well as drug production and drug delivery devices. Finally, a critical discussion of the current landscape and possible development scenarios will take place.</p></div>","PeriodicalId":37770,"journal":{"name":"Bioprinting","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"3D printing of self-healing materials for drug delivery applications: Promises, advances and outlooks\",\"authors\":\"\",\"doi\":\"10.1016/j.bprint.2024.e00353\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This article examines 3D-printed structures that have self-healing properties. Additive manufacturing, also known as additive printing or 3D printing, is a sophisticated and adaptable technology that enables rapid, on-demand manufacturing of solid items made through a construction process based on a virtual computer-aided design (CAD) model. A technique known as 3D printing (3DP) enables the rapid creation of complex geometric shapes with previously unimaginable precision and performance. However, the availability of tunable-quality materials, especially those developed for additive manufacturing, remains a barrier to the widespread use of 3DP technology. This may increase the lifetime and performance of structural elements and even enable the propagation of living tissues for use in biomedical applications, including organ printing. This study discusses and analyzes the most relevant findings from the recent publication of 3D printable and self-healing polymer materials, by providing a chemical and physical self-healing process that may be used in 3D printing, as well as drug production and drug delivery devices. Finally, a critical discussion of the current landscape and possible development scenarios will take place.</p></div>\",\"PeriodicalId\":37770,\"journal\":{\"name\":\"Bioprinting\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioprinting\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405886624000253\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioprinting","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405886624000253","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

本文探讨了具有自愈合特性的三维打印结构。快速成型制造,又称增材制造打印或三维打印,是一种先进的适应性强的技术,可根据虚拟计算机辅助设计(CAD)模型,通过构建过程快速按需制造实体物品。三维打印(3DP)技术可以快速制造出复杂的几何形状,其精度和性能是以前无法想象的。然而,可调质量材料的可用性,尤其是为增材制造开发的材料的可用性,仍然是 3DP 技术广泛应用的一个障碍。这可能会提高结构元件的寿命和性能,甚至使活组织的繁殖能够用于生物医学应用,包括器官打印。本研究讨论和分析了最近发表的三维可打印和自愈合聚合物材料中最相关的研究成果,提供了可用于三维打印以及药物生产和药物输送设备的化学和物理自愈合过程。最后,还将对当前形势和可能的发展方案进行批判性讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
3D printing of self-healing materials for drug delivery applications: Promises, advances and outlooks

This article examines 3D-printed structures that have self-healing properties. Additive manufacturing, also known as additive printing or 3D printing, is a sophisticated and adaptable technology that enables rapid, on-demand manufacturing of solid items made through a construction process based on a virtual computer-aided design (CAD) model. A technique known as 3D printing (3DP) enables the rapid creation of complex geometric shapes with previously unimaginable precision and performance. However, the availability of tunable-quality materials, especially those developed for additive manufacturing, remains a barrier to the widespread use of 3DP technology. This may increase the lifetime and performance of structural elements and even enable the propagation of living tissues for use in biomedical applications, including organ printing. This study discusses and analyzes the most relevant findings from the recent publication of 3D printable and self-healing polymer materials, by providing a chemical and physical self-healing process that may be used in 3D printing, as well as drug production and drug delivery devices. Finally, a critical discussion of the current landscape and possible development scenarios will take place.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioprinting
Bioprinting Computer Science-Computer Science Applications
CiteScore
11.50
自引率
0.00%
发文量
72
审稿时长
68 days
期刊介绍: Bioprinting is a broad-spectrum, multidisciplinary journal that covers all aspects of 3D fabrication technology involving biological tissues, organs and cells for medical and biotechnology applications. Topics covered include nanomaterials, biomaterials, scaffolds, 3D printing technology, imaging and CAD/CAM software and hardware, post-printing bioreactor maturation, cell and biological factor patterning, biofabrication, tissue engineering and other applications of 3D bioprinting technology. Bioprinting publishes research reports describing novel results with high clinical significance in all areas of 3D bioprinting research. Bioprinting issues contain a wide variety of review and analysis articles covering topics relevant to 3D bioprinting ranging from basic biological, material and technical advances to pre-clinical and clinical applications of 3D bioprinting.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信