香稻中 2-乙酰基-1-吡咯啉的生物合成途径、调控机制及潜在应用研究进展

IF 6.1 2区 生物学 Q1 PLANT SCIENCES
{"title":"香稻中 2-乙酰基-1-吡咯啉的生物合成途径、调控机制及潜在应用研究进展","authors":"","doi":"10.1016/j.plaphy.2024.109047","DOIUrl":null,"url":null,"abstract":"<div><p>The formation of rice aroma is a complex process that is influenced by genetic and environmental factors. More than 500 fragrance compounds have been documented in fragrant rice, among which 2-AP dominates the aroma of rice. This paper introduced the identification of <em>OsBadh2</em> in the biosynthesis of 2-AP in rice. Then, non-enzymatic and enzymatic pathways of the 2-AP biosynthesis have been comprehensively investigated. In detail, 2-AP biosynthesis-associated enzyme, such as OsBADH2, OsP5CS, OsGAD, OsGAPDH, OsProDH, OsOAT, OsODC and OsDAO, have been summarized, while MG and fatty acids are also implicated in modulating the biosynthesis of 2-AP by providing the acetyl groups. Moreover, extensive collections of traditional fragrant rice varieties have been collated, together with the <em>OsBadh2</em> haplotypes of 312 fragrant rice germplasm in China. And finally, genetic engineering of <em>OsBadh2</em> and other genes in the 2-AP biosynthesis to develop fragrant rice are discussed.</p></div>","PeriodicalId":20234,"journal":{"name":"Plant Physiology and Biochemistry","volume":null,"pages":null},"PeriodicalIF":6.1000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Progresses in biosynthesis pathway, regulation mechanism and potential application of 2-acetyl-1-pyrroline in fragrant rice\",\"authors\":\"\",\"doi\":\"10.1016/j.plaphy.2024.109047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The formation of rice aroma is a complex process that is influenced by genetic and environmental factors. More than 500 fragrance compounds have been documented in fragrant rice, among which 2-AP dominates the aroma of rice. This paper introduced the identification of <em>OsBadh2</em> in the biosynthesis of 2-AP in rice. Then, non-enzymatic and enzymatic pathways of the 2-AP biosynthesis have been comprehensively investigated. In detail, 2-AP biosynthesis-associated enzyme, such as OsBADH2, OsP5CS, OsGAD, OsGAPDH, OsProDH, OsOAT, OsODC and OsDAO, have been summarized, while MG and fatty acids are also implicated in modulating the biosynthesis of 2-AP by providing the acetyl groups. Moreover, extensive collections of traditional fragrant rice varieties have been collated, together with the <em>OsBadh2</em> haplotypes of 312 fragrant rice germplasm in China. And finally, genetic engineering of <em>OsBadh2</em> and other genes in the 2-AP biosynthesis to develop fragrant rice are discussed.</p></div>\",\"PeriodicalId\":20234,\"journal\":{\"name\":\"Plant Physiology and Biochemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Physiology and Biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0981942824007150\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology and Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0981942824007150","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

稻米香气的形成是一个复杂的过程,受到遗传和环境因素的影响。在香米中已记录了 500 多种香味化合物,其中 2-AP 在水稻香味中占主导地位。本文介绍了 OsBadh2 在水稻 2-AP 生物合成过程中的鉴定。然后,对 2-AP 生物合成的非酶和酶途径进行了全面研究。详细总结了与 2-AP 生物合成相关的酶,如 OsBADH2、OsP5CS、OsGAD、OsGAPDH、OsProDH、OsOAT、OsODC 和 OsDAO,而 MG 和脂肪酸也通过提供乙酰基参与调节 2-AP 的生物合成。此外,还整理了大量传统香稻品种,以及中国 312 份香稻种质的 OsBadh2 单倍型。最后,还讨论了通过对 OsBadh2 和 2-AP 生物合成过程中的其他基因进行基因工程改造来培育香稻的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Progresses in biosynthesis pathway, regulation mechanism and potential application of 2-acetyl-1-pyrroline in fragrant rice

The formation of rice aroma is a complex process that is influenced by genetic and environmental factors. More than 500 fragrance compounds have been documented in fragrant rice, among which 2-AP dominates the aroma of rice. This paper introduced the identification of OsBadh2 in the biosynthesis of 2-AP in rice. Then, non-enzymatic and enzymatic pathways of the 2-AP biosynthesis have been comprehensively investigated. In detail, 2-AP biosynthesis-associated enzyme, such as OsBADH2, OsP5CS, OsGAD, OsGAPDH, OsProDH, OsOAT, OsODC and OsDAO, have been summarized, while MG and fatty acids are also implicated in modulating the biosynthesis of 2-AP by providing the acetyl groups. Moreover, extensive collections of traditional fragrant rice varieties have been collated, together with the OsBadh2 haplotypes of 312 fragrant rice germplasm in China. And finally, genetic engineering of OsBadh2 and other genes in the 2-AP biosynthesis to develop fragrant rice are discussed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plant Physiology and Biochemistry
Plant Physiology and Biochemistry 生物-植物科学
CiteScore
11.10
自引率
3.10%
发文量
410
审稿时长
33 days
期刊介绍: Plant Physiology and Biochemistry publishes original theoretical, experimental and technical contributions in the various fields of plant physiology (biochemistry, physiology, structure, genetics, plant-microbe interactions, etc.) at diverse levels of integration (molecular, subcellular, cellular, organ, whole plant, environmental). Opinions expressed in the journal are the sole responsibility of the authors and publication does not imply the editors'' agreement. Manuscripts describing molecular-genetic and/or gene expression data that are not integrated with biochemical analysis and/or actual measurements of plant physiological processes are not suitable for PPB. Also "Omics" studies (transcriptomics, proteomics, metabolomics, etc.) reporting descriptive analysis without an element of functional validation assays, will not be considered. Similarly, applied agronomic or phytochemical studies that generate no new, fundamental insights in plant physiological and/or biochemical processes are not suitable for publication in PPB. Plant Physiology and Biochemistry publishes several types of articles: Reviews, Papers and Short Papers. Articles for Reviews are either invited by the editor or proposed by the authors for the editor''s prior agreement. Reviews should not exceed 40 typewritten pages and Short Papers no more than approximately 8 typewritten pages. The fundamental character of Plant Physiology and Biochemistry remains that of a journal for original results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信