{"title":"旋转圆环上珠子运动的周期解和次谐波解","authors":"Z. Daniel Cortés , G. Alexander Gutiérrez","doi":"10.1016/j.nonrwa.2024.104189","DOIUrl":null,"url":null,"abstract":"<div><p>We establish the necessary conditions for the existence and multiplicity of periodic and subharmonic solutions to a second-order nonlinear ordinary differential equation (ODE). This ODE describes the motion of a bead on a rotating circular hoop subjected to a constant angular velocity <span><math><mi>ω</mi></math></span> and a <span><math><mi>T</mi></math></span>-periodic forcing. Our approach involves estimating bounds for the angular velocity and period using upper and lower solution methods.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Periodic and subharmonic solutions in the motion of a bead on a rotating circular hoop\",\"authors\":\"Z. Daniel Cortés , G. Alexander Gutiérrez\",\"doi\":\"10.1016/j.nonrwa.2024.104189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We establish the necessary conditions for the existence and multiplicity of periodic and subharmonic solutions to a second-order nonlinear ordinary differential equation (ODE). This ODE describes the motion of a bead on a rotating circular hoop subjected to a constant angular velocity <span><math><mi>ω</mi></math></span> and a <span><math><mi>T</mi></math></span>-periodic forcing. Our approach involves estimating bounds for the angular velocity and period using upper and lower solution methods.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1468121824001287\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121824001287","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
我们建立了一个二阶非线性常微分方程(ODE)的周期解和次谐波解的存在性和多重性的必要条件。该 ODE 描述了旋转圆环上的珠子在恒定角速度 ω 和 T 周期强迫作用下的运动。我们的方法包括使用上解法和下解法估计角速度和周期的边界。
Periodic and subharmonic solutions in the motion of a bead on a rotating circular hoop
We establish the necessary conditions for the existence and multiplicity of periodic and subharmonic solutions to a second-order nonlinear ordinary differential equation (ODE). This ODE describes the motion of a bead on a rotating circular hoop subjected to a constant angular velocity and a -periodic forcing. Our approach involves estimating bounds for the angular velocity and period using upper and lower solution methods.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.