{"title":"旋转圆环上珠子运动的周期解和次谐波解","authors":"Z. Daniel Cortés , G. Alexander Gutiérrez","doi":"10.1016/j.nonrwa.2024.104189","DOIUrl":null,"url":null,"abstract":"<div><p>We establish the necessary conditions for the existence and multiplicity of periodic and subharmonic solutions to a second-order nonlinear ordinary differential equation (ODE). This ODE describes the motion of a bead on a rotating circular hoop subjected to a constant angular velocity <span><math><mi>ω</mi></math></span> and a <span><math><mi>T</mi></math></span>-periodic forcing. Our approach involves estimating bounds for the angular velocity and period using upper and lower solution methods.</p></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"81 ","pages":"Article 104189"},"PeriodicalIF":1.8000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Periodic and subharmonic solutions in the motion of a bead on a rotating circular hoop\",\"authors\":\"Z. Daniel Cortés , G. Alexander Gutiérrez\",\"doi\":\"10.1016/j.nonrwa.2024.104189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We establish the necessary conditions for the existence and multiplicity of periodic and subharmonic solutions to a second-order nonlinear ordinary differential equation (ODE). This ODE describes the motion of a bead on a rotating circular hoop subjected to a constant angular velocity <span><math><mi>ω</mi></math></span> and a <span><math><mi>T</mi></math></span>-periodic forcing. Our approach involves estimating bounds for the angular velocity and period using upper and lower solution methods.</p></div>\",\"PeriodicalId\":49745,\"journal\":{\"name\":\"Nonlinear Analysis-Real World Applications\",\"volume\":\"81 \",\"pages\":\"Article 104189\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Real World Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1468121824001287\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Real World Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121824001287","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
我们建立了一个二阶非线性常微分方程(ODE)的周期解和次谐波解的存在性和多重性的必要条件。该 ODE 描述了旋转圆环上的珠子在恒定角速度 ω 和 T 周期强迫作用下的运动。我们的方法包括使用上解法和下解法估计角速度和周期的边界。
Periodic and subharmonic solutions in the motion of a bead on a rotating circular hoop
We establish the necessary conditions for the existence and multiplicity of periodic and subharmonic solutions to a second-order nonlinear ordinary differential equation (ODE). This ODE describes the motion of a bead on a rotating circular hoop subjected to a constant angular velocity and a -periodic forcing. Our approach involves estimating bounds for the angular velocity and period using upper and lower solution methods.
期刊介绍:
Nonlinear Analysis: Real World Applications welcomes all research articles of the highest quality with special emphasis on applying techniques of nonlinear analysis to model and to treat nonlinear phenomena with which nature confronts us. Coverage of applications includes any branch of science and technology such as solid and fluid mechanics, material science, mathematical biology and chemistry, control theory, and inverse problems.
The aim of Nonlinear Analysis: Real World Applications is to publish articles which are predominantly devoted to employing methods and techniques from analysis, including partial differential equations, functional analysis, dynamical systems and evolution equations, calculus of variations, and bifurcations theory.