三维可压缩微波方程的全局拟合性

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Tao Liang , Yongsheng Li , Xiaoping Zhai
{"title":"三维可压缩微波方程的全局拟合性","authors":"Tao Liang ,&nbsp;Yongsheng Li ,&nbsp;Xiaoping Zhai","doi":"10.1016/j.nonrwa.2024.104192","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we study the Cauchy problem of the three-dimensional compressible micropolar equations in the absence of heat-conductivity. By leveraging Fourier theory and employing a refined energy method, we establish the global well-posedness of the equations for small initial data within Besov spaces. As a byproduct, we also derive the optimal time decay of solutions if the low frequency of initial data belonging to <span><math><mrow><msubsup><mrow><mover><mrow><mi>B</mi></mrow><mrow><mo>̇</mo></mrow></mover></mrow><mrow><mn>2</mn><mo>,</mo><mi>∞</mi></mrow><mrow><mo>−</mo><msub><mrow><mi>σ</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msubsup><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span>.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global well-posedness for the three dimensional compressible micropolar equations\",\"authors\":\"Tao Liang ,&nbsp;Yongsheng Li ,&nbsp;Xiaoping Zhai\",\"doi\":\"10.1016/j.nonrwa.2024.104192\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we study the Cauchy problem of the three-dimensional compressible micropolar equations in the absence of heat-conductivity. By leveraging Fourier theory and employing a refined energy method, we establish the global well-posedness of the equations for small initial data within Besov spaces. As a byproduct, we also derive the optimal time decay of solutions if the low frequency of initial data belonging to <span><math><mrow><msubsup><mrow><mover><mrow><mi>B</mi></mrow><mrow><mo>̇</mo></mrow></mover></mrow><mrow><mn>2</mn><mo>,</mo><mi>∞</mi></mrow><mrow><mo>−</mo><msub><mrow><mi>σ</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msubsup><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span>.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1468121824001317\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121824001317","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们研究了三维可压缩微极性方程在无热传导情况下的 Cauchy 问题。通过利用傅立叶理论和精炼能量法,我们在贝索夫空间内建立了小初始数据下方程的全局好求解性。作为副产品,我们还推导出了在Ḃ2,∞-σ1(R3)初始数据频率较低时,解的最佳时间衰减。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global well-posedness for the three dimensional compressible micropolar equations

In this paper, we study the Cauchy problem of the three-dimensional compressible micropolar equations in the absence of heat-conductivity. By leveraging Fourier theory and employing a refined energy method, we establish the global well-posedness of the equations for small initial data within Besov spaces. As a byproduct, we also derive the optimal time decay of solutions if the low frequency of initial data belonging to Ḃ2,σ1(R3).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信