Jieyang Peng , Andreas Kimmig , Dongkun Wang , Zhibin Niu , Xiufeng Liu , Xiaoming Tao , Jivka Ovtcharova
{"title":"基于视觉分析的碳足迹追踪和模式识别框架","authors":"Jieyang Peng , Andreas Kimmig , Dongkun Wang , Zhibin Niu , Xiufeng Liu , Xiaoming Tao , Jivka Ovtcharova","doi":"10.1016/j.spc.2024.07.019","DOIUrl":null,"url":null,"abstract":"<div><p>With growing concerns about global warming, industrial carbon footprints have garnered increased attention due to the energy-intensive and uninterrupted operation of industrial equipment. Fine-grained modeling and visual analytics of industrial carbon footprints can reveal the mechanisms behind the formation and evolution of carbon chains. However, the mechanisms underlying industrial carbon emissions remain unclear, leading to a lack of accuracy and specificity in current carbon quantification models. To address these gaps, we developed a comprehensive quantitative model that considers specific pathways involved in industrial processes, providing more accurate estimations of carbon emissions. We also designed an innovative visual analytical framework that uncovers implicit patterns and spatiotemporal distributions of industrial carbon footprints. By comparing our approach with state-of-the-art studies, we validated the superiority of our method in terms of its intuitiveness and interactivity. Empirical studies revealed potential emission patterns and spatiotemporal dynamics that traditional studies could not identify. We identified four consistent patterns in industrial carbon emissions: normal, high-emission, low-emission, and dedicated patterns. Our findings also led to optimization suggestions for different emission patterns, highlighting the system’s capability in extracting valuable insights from workshop carbon emission data. Our research showcases a unified visual analytical approach that supports exploratory analysis, and we believe it will uncover implicit knowledge within industrial carbon data, providing valuable insights for optimization.</p></div>","PeriodicalId":48619,"journal":{"name":"Sustainable Production and Consumption","volume":"50 ","pages":"Pages 327-346"},"PeriodicalIF":10.9000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Carbon footprint tracing and pattern recognition framework based on visual analytics\",\"authors\":\"Jieyang Peng , Andreas Kimmig , Dongkun Wang , Zhibin Niu , Xiufeng Liu , Xiaoming Tao , Jivka Ovtcharova\",\"doi\":\"10.1016/j.spc.2024.07.019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>With growing concerns about global warming, industrial carbon footprints have garnered increased attention due to the energy-intensive and uninterrupted operation of industrial equipment. Fine-grained modeling and visual analytics of industrial carbon footprints can reveal the mechanisms behind the formation and evolution of carbon chains. However, the mechanisms underlying industrial carbon emissions remain unclear, leading to a lack of accuracy and specificity in current carbon quantification models. To address these gaps, we developed a comprehensive quantitative model that considers specific pathways involved in industrial processes, providing more accurate estimations of carbon emissions. We also designed an innovative visual analytical framework that uncovers implicit patterns and spatiotemporal distributions of industrial carbon footprints. By comparing our approach with state-of-the-art studies, we validated the superiority of our method in terms of its intuitiveness and interactivity. Empirical studies revealed potential emission patterns and spatiotemporal dynamics that traditional studies could not identify. We identified four consistent patterns in industrial carbon emissions: normal, high-emission, low-emission, and dedicated patterns. Our findings also led to optimization suggestions for different emission patterns, highlighting the system’s capability in extracting valuable insights from workshop carbon emission data. Our research showcases a unified visual analytical approach that supports exploratory analysis, and we believe it will uncover implicit knowledge within industrial carbon data, providing valuable insights for optimization.</p></div>\",\"PeriodicalId\":48619,\"journal\":{\"name\":\"Sustainable Production and Consumption\",\"volume\":\"50 \",\"pages\":\"Pages 327-346\"},\"PeriodicalIF\":10.9000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Production and Consumption\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352550924002112\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL STUDIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Production and Consumption","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352550924002112","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL STUDIES","Score":null,"Total":0}
Carbon footprint tracing and pattern recognition framework based on visual analytics
With growing concerns about global warming, industrial carbon footprints have garnered increased attention due to the energy-intensive and uninterrupted operation of industrial equipment. Fine-grained modeling and visual analytics of industrial carbon footprints can reveal the mechanisms behind the formation and evolution of carbon chains. However, the mechanisms underlying industrial carbon emissions remain unclear, leading to a lack of accuracy and specificity in current carbon quantification models. To address these gaps, we developed a comprehensive quantitative model that considers specific pathways involved in industrial processes, providing more accurate estimations of carbon emissions. We also designed an innovative visual analytical framework that uncovers implicit patterns and spatiotemporal distributions of industrial carbon footprints. By comparing our approach with state-of-the-art studies, we validated the superiority of our method in terms of its intuitiveness and interactivity. Empirical studies revealed potential emission patterns and spatiotemporal dynamics that traditional studies could not identify. We identified four consistent patterns in industrial carbon emissions: normal, high-emission, low-emission, and dedicated patterns. Our findings also led to optimization suggestions for different emission patterns, highlighting the system’s capability in extracting valuable insights from workshop carbon emission data. Our research showcases a unified visual analytical approach that supports exploratory analysis, and we believe it will uncover implicit knowledge within industrial carbon data, providing valuable insights for optimization.
期刊介绍:
Sustainable production and consumption refers to the production and utilization of goods and services in a way that benefits society, is economically viable, and has minimal environmental impact throughout its entire lifespan. Our journal is dedicated to publishing top-notch interdisciplinary research and practical studies in this emerging field. We take a distinctive approach by examining the interplay between technology, consumption patterns, and policy to identify sustainable solutions for both production and consumption systems.