C. Caprioli , D. Mazzucconi , D. Bortot , S. Agosteo , A. Pola , D. Rastelli , N. Protti
{"title":"模拟纳米模拟实验中低能电子相互作用的数值工具","authors":"C. Caprioli , D. Mazzucconi , D. Bortot , S. Agosteo , A. Pola , D. Rastelli , N. Protti","doi":"10.1016/j.radmeas.2024.107265","DOIUrl":null,"url":null,"abstract":"<div><p>Radiation damages to genes and cells occur at the DNA level, and therefore they are directly related to the spatial distribution of events caused by radiation at nanometer scale. Nanodosimetry introduces new quantities to correlate the initial features of radiation interactions and the likelihood of late radiobiological effects by means of Monte Carlo codes and, experimentally, with gas-detectors operating at low pressure.</p><p>Within this context, the aim of this work is to develop a numerical approach based on the implementation of different simulation tools to accurately describe the low energy electron transport processes within nanodosimetric devices. This approach was directly applied to perform a proof-of-concept study of the response of the electron collector of the STARTRACK nanodosimeter. Garfield++ was used to simulate the primary track structure of 5.8 MeV He-4 particles, while COMSOL Multiphysics was used to model the geometry and the electrostatic field of the electron collector. Available experimental data, measured with the STARTRACK nanodosimeter, were used to validate Garfield++ nanodosimetric spectrum before proceeding with the simulation of the electron transport stage in the drift volume, again performed with Garfield++. In order to verify the performance and reliability of the implemented codes, the nanodosimetric distributions were studied with the threefold objective of characterizing the time, space, and energy distributions of particles collected at the end of the drift volume. These results can offer a valuable insight into the overall working principle of nanodosimeters: this understanding can be pivotal in optimizing and refining the design of such devices, ultimately extending their effectiveness in particle track characterization during radiation therapy.</p></div>","PeriodicalId":21055,"journal":{"name":"Radiation Measurements","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1350448724002130/pdfft?md5=568729d675c5f93596a23052f1ea0a17&pid=1-s2.0-S1350448724002130-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Numerical tools for simulating low-energy electron interactions in experimental nanodosimetry applications\",\"authors\":\"C. Caprioli , D. Mazzucconi , D. Bortot , S. Agosteo , A. Pola , D. Rastelli , N. Protti\",\"doi\":\"10.1016/j.radmeas.2024.107265\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Radiation damages to genes and cells occur at the DNA level, and therefore they are directly related to the spatial distribution of events caused by radiation at nanometer scale. Nanodosimetry introduces new quantities to correlate the initial features of radiation interactions and the likelihood of late radiobiological effects by means of Monte Carlo codes and, experimentally, with gas-detectors operating at low pressure.</p><p>Within this context, the aim of this work is to develop a numerical approach based on the implementation of different simulation tools to accurately describe the low energy electron transport processes within nanodosimetric devices. This approach was directly applied to perform a proof-of-concept study of the response of the electron collector of the STARTRACK nanodosimeter. Garfield++ was used to simulate the primary track structure of 5.8 MeV He-4 particles, while COMSOL Multiphysics was used to model the geometry and the electrostatic field of the electron collector. Available experimental data, measured with the STARTRACK nanodosimeter, were used to validate Garfield++ nanodosimetric spectrum before proceeding with the simulation of the electron transport stage in the drift volume, again performed with Garfield++. In order to verify the performance and reliability of the implemented codes, the nanodosimetric distributions were studied with the threefold objective of characterizing the time, space, and energy distributions of particles collected at the end of the drift volume. These results can offer a valuable insight into the overall working principle of nanodosimeters: this understanding can be pivotal in optimizing and refining the design of such devices, ultimately extending their effectiveness in particle track characterization during radiation therapy.</p></div>\",\"PeriodicalId\":21055,\"journal\":{\"name\":\"Radiation Measurements\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1350448724002130/pdfft?md5=568729d675c5f93596a23052f1ea0a17&pid=1-s2.0-S1350448724002130-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiation Measurements\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1350448724002130\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiation Measurements","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350448724002130","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Numerical tools for simulating low-energy electron interactions in experimental nanodosimetry applications
Radiation damages to genes and cells occur at the DNA level, and therefore they are directly related to the spatial distribution of events caused by radiation at nanometer scale. Nanodosimetry introduces new quantities to correlate the initial features of radiation interactions and the likelihood of late radiobiological effects by means of Monte Carlo codes and, experimentally, with gas-detectors operating at low pressure.
Within this context, the aim of this work is to develop a numerical approach based on the implementation of different simulation tools to accurately describe the low energy electron transport processes within nanodosimetric devices. This approach was directly applied to perform a proof-of-concept study of the response of the electron collector of the STARTRACK nanodosimeter. Garfield++ was used to simulate the primary track structure of 5.8 MeV He-4 particles, while COMSOL Multiphysics was used to model the geometry and the electrostatic field of the electron collector. Available experimental data, measured with the STARTRACK nanodosimeter, were used to validate Garfield++ nanodosimetric spectrum before proceeding with the simulation of the electron transport stage in the drift volume, again performed with Garfield++. In order to verify the performance and reliability of the implemented codes, the nanodosimetric distributions were studied with the threefold objective of characterizing the time, space, and energy distributions of particles collected at the end of the drift volume. These results can offer a valuable insight into the overall working principle of nanodosimeters: this understanding can be pivotal in optimizing and refining the design of such devices, ultimately extending their effectiveness in particle track characterization during radiation therapy.
期刊介绍:
The journal seeks to publish papers that present advances in the following areas: spontaneous and stimulated luminescence (including scintillating materials, thermoluminescence, and optically stimulated luminescence); electron spin resonance of natural and synthetic materials; the physics, design and performance of radiation measurements (including computational modelling such as electronic transport simulations); the novel basic aspects of radiation measurement in medical physics. Studies of energy-transfer phenomena, track physics and microdosimetry are also of interest to the journal.
Applications relevant to the journal, particularly where they present novel detection techniques, novel analytical approaches or novel materials, include: personal dosimetry (including dosimetric quantities, active/electronic and passive monitoring techniques for photon, neutron and charged-particle exposures); environmental dosimetry (including methodological advances and predictive models related to radon, but generally excluding local survey results of radon where the main aim is to establish the radiation risk to populations); cosmic and high-energy radiation measurements (including dosimetry, space radiation effects, and single event upsets); dosimetry-based archaeological and Quaternary dating; dosimetry-based approaches to thermochronometry; accident and retrospective dosimetry (including activation detectors), and dosimetry and measurements related to medical applications.