复合 xNiFe2O4/(1-x)SrFe12O19氧载体用于生物乙醇化学循环重整与水裂解共产合成气和氢气

IF 5.6 2区 工程技术 Q2 ENERGY & FUELS
{"title":"复合 xNiFe2O4/(1-x)SrFe12O19氧载体用于生物乙醇化学循环重整与水裂解共产合成气和氢气","authors":"","doi":"10.1016/j.joei.2024.101780","DOIUrl":null,"url":null,"abstract":"<div><p>Sr–Fe oxides are suitable oxygen carriers (OCs) with excellent cyclic stability. However, the moderate redox activity causes a deficiency in H<sub>2</sub> yield in chemical looping reforming coupled with water splitting (CLR-WS) process. Herein, we designed and prepared the composite xNiFe<sub>2</sub>O<sub>4</sub>/(1-x)SrFe<sub>12</sub>O<sub>19</sub> OCs by ball milling method, which exhibited both high redox activity and high cyclic stability during reactions. A series of characterizations showed that the introduction of NiFe<sub>2</sub>O<sub>4</sub> promoted the oxygen vacancy formation and the release of lattice oxygen, facilitating the reforming of bioethanol in fuel reactor (FR). During CLR-WS process, a high carbon conversion of 79.20 % and a H<sub>2</sub> yield of 13.23 mmol/g OC were achieved by 3Ni7Sr OC at 800 °C, outperforming that of the conventional SrFe<sub>12</sub>O<sub>19</sub> OC. Moreover, the severe carbon deposition and sintering issues inherent to NiFe<sub>2</sub>O<sub>4</sub> were avoided due to the presence of Sr. All Sr-containing composite OCs showed H<sub>2</sub> purity exceeding 99.26 % and excellent cycling stability with no apparent activation of oxygen transport capacity over 3000 min redox reactions.</p></div>","PeriodicalId":17287,"journal":{"name":"Journal of The Energy Institute","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Composite xNiFe2O4/(1-x)SrFe12O19 oxygen carriers for chemical looping reforming of bioethanol coupled with water splitting to coproduce syngas and hydrogen\",\"authors\":\"\",\"doi\":\"10.1016/j.joei.2024.101780\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Sr–Fe oxides are suitable oxygen carriers (OCs) with excellent cyclic stability. However, the moderate redox activity causes a deficiency in H<sub>2</sub> yield in chemical looping reforming coupled with water splitting (CLR-WS) process. Herein, we designed and prepared the composite xNiFe<sub>2</sub>O<sub>4</sub>/(1-x)SrFe<sub>12</sub>O<sub>19</sub> OCs by ball milling method, which exhibited both high redox activity and high cyclic stability during reactions. A series of characterizations showed that the introduction of NiFe<sub>2</sub>O<sub>4</sub> promoted the oxygen vacancy formation and the release of lattice oxygen, facilitating the reforming of bioethanol in fuel reactor (FR). During CLR-WS process, a high carbon conversion of 79.20 % and a H<sub>2</sub> yield of 13.23 mmol/g OC were achieved by 3Ni7Sr OC at 800 °C, outperforming that of the conventional SrFe<sub>12</sub>O<sub>19</sub> OC. Moreover, the severe carbon deposition and sintering issues inherent to NiFe<sub>2</sub>O<sub>4</sub> were avoided due to the presence of Sr. All Sr-containing composite OCs showed H<sub>2</sub> purity exceeding 99.26 % and excellent cycling stability with no apparent activation of oxygen transport capacity over 3000 min redox reactions.</p></div>\",\"PeriodicalId\":17287,\"journal\":{\"name\":\"Journal of The Energy Institute\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Energy Institute\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1743967124002587\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Energy Institute","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1743967124002587","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

锶铁氧化物是合适的氧载体(OC),具有出色的循环稳定性。然而,适度的氧化还原活性会导致化学循环重整耦合水裂解(CLR-WS)过程中 H2 产率的不足。在此,我们采用球磨法设计并制备了 xNiFe2O4/(1-x)SrFe12O19 复合 OCs,该 OCs 在反应过程中表现出高氧化还原活性和高循环稳定性。一系列表征结果表明,NiFe2O4 的引入促进了氧空位的形成和晶格氧的释放,有利于生物乙醇在燃料反应器(FR)中的重整。在 CLR-WS 过程中,3Ni7Sr OC 在 800 ℃ 下实现了 79.20 % 的高碳转化率和 13.23 mmol/g OC 的 H2 产率,优于传统的 SrFe12O19 OC。此外,由于 Sr 的存在,避免了 NiFe2O4 所固有的严重碳沉积和烧结问题。所有含 Sr 的复合 OC 都显示出超过 99.26 % 的 H2 纯度和出色的循环稳定性,在 3000 分钟的氧化还原反应中,氧传输能力没有明显活化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Composite xNiFe2O4/(1-x)SrFe12O19 oxygen carriers for chemical looping reforming of bioethanol coupled with water splitting to coproduce syngas and hydrogen

Sr–Fe oxides are suitable oxygen carriers (OCs) with excellent cyclic stability. However, the moderate redox activity causes a deficiency in H2 yield in chemical looping reforming coupled with water splitting (CLR-WS) process. Herein, we designed and prepared the composite xNiFe2O4/(1-x)SrFe12O19 OCs by ball milling method, which exhibited both high redox activity and high cyclic stability during reactions. A series of characterizations showed that the introduction of NiFe2O4 promoted the oxygen vacancy formation and the release of lattice oxygen, facilitating the reforming of bioethanol in fuel reactor (FR). During CLR-WS process, a high carbon conversion of 79.20 % and a H2 yield of 13.23 mmol/g OC were achieved by 3Ni7Sr OC at 800 °C, outperforming that of the conventional SrFe12O19 OC. Moreover, the severe carbon deposition and sintering issues inherent to NiFe2O4 were avoided due to the presence of Sr. All Sr-containing composite OCs showed H2 purity exceeding 99.26 % and excellent cycling stability with no apparent activation of oxygen transport capacity over 3000 min redox reactions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of The Energy Institute
Journal of The Energy Institute 工程技术-能源与燃料
CiteScore
10.60
自引率
5.30%
发文量
166
审稿时长
16 days
期刊介绍: The Journal of the Energy Institute provides peer reviewed coverage of original high quality research on energy, engineering and technology.The coverage is broad and the main areas of interest include: Combustion engineering and associated technologies; process heating; power generation; engines and propulsion; emissions and environmental pollution control; clean coal technologies; carbon abatement technologies Emissions and environmental pollution control; safety and hazards; Clean coal technologies; carbon abatement technologies, including carbon capture and storage, CCS; Petroleum engineering and fuel quality, including storage and transport Alternative energy sources; biomass utilisation and biomass conversion technologies; energy from waste, incineration and recycling Energy conversion, energy recovery and energy efficiency; space heating, fuel cells, heat pumps and cooling systems Energy storage The journal''s coverage reflects changes in energy technology that result from the transition to more efficient energy production and end use together with reduced carbon emission.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信