{"title":"废气再循环对氨-柴油双燃料发动机燃烧和排放特性的影响:热容量、稀释和化学效应","authors":"Shouying Jin, Zhenyuan Zi, Puze Yang, Junhong Zhang, Binyang Wu","doi":"10.1016/j.joei.2024.101778","DOIUrl":null,"url":null,"abstract":"<div><p>As the greenhouse effect intensifies, ammonia is garnering increasing attention as a carbon-free fuel. In the transport sector, ammonia-diesel dual-fuel (ADDF) engines are regarded as an effective means of reducing carbon emissions. The objective of this study is to investigate the combustion and emission optimization of an ADDF engine under high load conditions. To this end, an experimental optimization study of different start of diesel injection timing (SODI) and exhaust gas recirculation (EGR) rates was conducted at a load of 18 bar and an ammonia energy ratio of 80 %. The mechanism of heat capacity, dilution, and chemical effects of EGR was also revealed by numerical simulation based on the separated variables method. It was demonstrated that advancing SODI is effective in enhancing combustion efficiency. However, this approach is limited by the upper limit of in-cylinder pressure and results in higher nitrogen oxides (NO<sub>x</sub>) emissions, which can be mitigated by the EGR. The heat capacity effect of EGR increases the specific heat capacity and decreases the average temperature. The suppression of the combustion process leads to a reduction in thermal and fuel NO<sub>x</sub>, but an increase in nitrous oxide (N<sub>2</sub>O) emissions. The dilution effect of EGR results in insufficient oxygen, which decreases the heat release rate and combustion efficiency. Additionally, the NO<sub>x</sub> and N<sub>2</sub>O are significantly reduced. The chemical effect of EGR affects reactive groups and unburned components that accelerate heat release rate and increase accumulated heat release, resulting in significantly higher NO<sub>x</sub>. The comprehensive effect of EGR results in a decrease in N<sub>2</sub>O emissions and a significant reduction in thermal and fuel NO<sub>x</sub>. The EGR and further optimization of SODI enabled the ADDF engine to achieve a gross indicated thermal efficiency of 48.5 % with a load of 18 bar and an ammonia energy ratio of 80 %. In addition, NO emissions were reduced by 32.8 percent and greenhouse gas emissions by 63.3 percent.</p></div>","PeriodicalId":17287,"journal":{"name":"Journal of The Energy Institute","volume":"117 ","pages":"Article 101778"},"PeriodicalIF":5.6000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The influence of exhaust gas recirculation on combustion and emission characteristics of ammonia-diesel dual-fuel engines: Heat capacity, dilution and chemical effects\",\"authors\":\"Shouying Jin, Zhenyuan Zi, Puze Yang, Junhong Zhang, Binyang Wu\",\"doi\":\"10.1016/j.joei.2024.101778\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>As the greenhouse effect intensifies, ammonia is garnering increasing attention as a carbon-free fuel. In the transport sector, ammonia-diesel dual-fuel (ADDF) engines are regarded as an effective means of reducing carbon emissions. The objective of this study is to investigate the combustion and emission optimization of an ADDF engine under high load conditions. To this end, an experimental optimization study of different start of diesel injection timing (SODI) and exhaust gas recirculation (EGR) rates was conducted at a load of 18 bar and an ammonia energy ratio of 80 %. The mechanism of heat capacity, dilution, and chemical effects of EGR was also revealed by numerical simulation based on the separated variables method. It was demonstrated that advancing SODI is effective in enhancing combustion efficiency. However, this approach is limited by the upper limit of in-cylinder pressure and results in higher nitrogen oxides (NO<sub>x</sub>) emissions, which can be mitigated by the EGR. The heat capacity effect of EGR increases the specific heat capacity and decreases the average temperature. The suppression of the combustion process leads to a reduction in thermal and fuel NO<sub>x</sub>, but an increase in nitrous oxide (N<sub>2</sub>O) emissions. The dilution effect of EGR results in insufficient oxygen, which decreases the heat release rate and combustion efficiency. Additionally, the NO<sub>x</sub> and N<sub>2</sub>O are significantly reduced. The chemical effect of EGR affects reactive groups and unburned components that accelerate heat release rate and increase accumulated heat release, resulting in significantly higher NO<sub>x</sub>. The comprehensive effect of EGR results in a decrease in N<sub>2</sub>O emissions and a significant reduction in thermal and fuel NO<sub>x</sub>. The EGR and further optimization of SODI enabled the ADDF engine to achieve a gross indicated thermal efficiency of 48.5 % with a load of 18 bar and an ammonia energy ratio of 80 %. In addition, NO emissions were reduced by 32.8 percent and greenhouse gas emissions by 63.3 percent.</p></div>\",\"PeriodicalId\":17287,\"journal\":{\"name\":\"Journal of The Energy Institute\",\"volume\":\"117 \",\"pages\":\"Article 101778\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Energy Institute\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1743967124002563\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Energy Institute","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1743967124002563","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
The influence of exhaust gas recirculation on combustion and emission characteristics of ammonia-diesel dual-fuel engines: Heat capacity, dilution and chemical effects
As the greenhouse effect intensifies, ammonia is garnering increasing attention as a carbon-free fuel. In the transport sector, ammonia-diesel dual-fuel (ADDF) engines are regarded as an effective means of reducing carbon emissions. The objective of this study is to investigate the combustion and emission optimization of an ADDF engine under high load conditions. To this end, an experimental optimization study of different start of diesel injection timing (SODI) and exhaust gas recirculation (EGR) rates was conducted at a load of 18 bar and an ammonia energy ratio of 80 %. The mechanism of heat capacity, dilution, and chemical effects of EGR was also revealed by numerical simulation based on the separated variables method. It was demonstrated that advancing SODI is effective in enhancing combustion efficiency. However, this approach is limited by the upper limit of in-cylinder pressure and results in higher nitrogen oxides (NOx) emissions, which can be mitigated by the EGR. The heat capacity effect of EGR increases the specific heat capacity and decreases the average temperature. The suppression of the combustion process leads to a reduction in thermal and fuel NOx, but an increase in nitrous oxide (N2O) emissions. The dilution effect of EGR results in insufficient oxygen, which decreases the heat release rate and combustion efficiency. Additionally, the NOx and N2O are significantly reduced. The chemical effect of EGR affects reactive groups and unburned components that accelerate heat release rate and increase accumulated heat release, resulting in significantly higher NOx. The comprehensive effect of EGR results in a decrease in N2O emissions and a significant reduction in thermal and fuel NOx. The EGR and further optimization of SODI enabled the ADDF engine to achieve a gross indicated thermal efficiency of 48.5 % with a load of 18 bar and an ammonia energy ratio of 80 %. In addition, NO emissions were reduced by 32.8 percent and greenhouse gas emissions by 63.3 percent.
期刊介绍:
The Journal of the Energy Institute provides peer reviewed coverage of original high quality research on energy, engineering and technology.The coverage is broad and the main areas of interest include:
Combustion engineering and associated technologies; process heating; power generation; engines and propulsion; emissions and environmental pollution control; clean coal technologies; carbon abatement technologies
Emissions and environmental pollution control; safety and hazards;
Clean coal technologies; carbon abatement technologies, including carbon capture and storage, CCS;
Petroleum engineering and fuel quality, including storage and transport
Alternative energy sources; biomass utilisation and biomass conversion technologies; energy from waste, incineration and recycling
Energy conversion, energy recovery and energy efficiency; space heating, fuel cells, heat pumps and cooling systems
Energy storage
The journal''s coverage reflects changes in energy technology that result from the transition to more efficient energy production and end use together with reduced carbon emission.