求解分数偏微分方程的空间六阶数值方案

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
{"title":"求解分数偏微分方程的空间六阶数值方案","authors":"","doi":"10.1016/j.aml.2024.109265","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, a spatial sixth-order numerical scheme for solving the time-fractional diffusion equation (TFDE) is proposed. The convergence order of the constructed numerical scheme is <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>τ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mi>h</mi></mrow><mrow><mn>6</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span>, where <span><math><mi>τ</mi></math></span> and <span><math><mi>h</mi></math></span> are the temporal and spatial step sizes, respectively. The stability and error estimation of proposed scheme are given by using Fourier method. Some numerical examples are studied to demonstrate the correctness and effectiveness of the scheme and validate the theoretical analysis.</p></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A spatial sixth-order numerical scheme for solving fractional partial differential equation\",\"authors\":\"\",\"doi\":\"10.1016/j.aml.2024.109265\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, a spatial sixth-order numerical scheme for solving the time-fractional diffusion equation (TFDE) is proposed. The convergence order of the constructed numerical scheme is <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>τ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mi>h</mi></mrow><mrow><mn>6</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span>, where <span><math><mi>τ</mi></math></span> and <span><math><mi>h</mi></math></span> are the temporal and spatial step sizes, respectively. The stability and error estimation of proposed scheme are given by using Fourier method. Some numerical examples are studied to demonstrate the correctness and effectiveness of the scheme and validate the theoretical analysis.</p></div>\",\"PeriodicalId\":55497,\"journal\":{\"name\":\"Applied Mathematics Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0893965924002854\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893965924002854","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种求解时间分数扩散方程(TFDE)的空间六阶数值方案。所建数值方案的收敛阶数为 O(τ2+h6),其中 τ 和 h 分别为时间步长和空间步长。利用傅立叶方法给出了拟议方案的稳定性和误差估计。研究了一些数值示例,以证明该方案的正确性和有效性,并验证理论分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A spatial sixth-order numerical scheme for solving fractional partial differential equation

In this paper, a spatial sixth-order numerical scheme for solving the time-fractional diffusion equation (TFDE) is proposed. The convergence order of the constructed numerical scheme is O(τ2+h6), where τ and h are the temporal and spatial step sizes, respectively. The stability and error estimation of proposed scheme are given by using Fourier method. Some numerical examples are studied to demonstrate the correctness and effectiveness of the scheme and validate the theoretical analysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Mathematics Letters
Applied Mathematics Letters 数学-应用数学
CiteScore
7.70
自引率
5.40%
发文量
347
审稿时长
10 days
期刊介绍: The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信