利用机器学习提高物联网无线传感器 RPL 的服务质量和安全性

Abubakar Wakili, Sara Bakkali, Ahmed El Hilali Alaoui
{"title":"利用机器学习提高物联网无线传感器 RPL 的服务质量和安全性","authors":"Abubakar Wakili,&nbsp;Sara Bakkali,&nbsp;Ahmed El Hilali Alaoui","doi":"10.1016/j.sintl.2024.100289","DOIUrl":null,"url":null,"abstract":"<div><p>Internet of Things (IoT) networks rely on wireless sensors for data collection and transmission, making them vulnerable to security threats that undermine their Quality of Service (QoS). The Routing Protocol for Low-Power and Lossy Networks (RPL) is crucial for efficient data transmission in IoT networks, but its performance can be significantly degraded by attacks such as Rank, Sinkhole and Wormhole attacks. These threats disrupt network integrity by manipulating routing information, attracting traffic through malicious nodes and tunneling data to malicious endpoints. This paper presents a novel machine learning-based framework to enhance RPL's security and QoS. Our approach integrates a random forest model for precise traffic classification, a reinforcement learning module for dynamic and adaptive routing, and a modified RPL objective function that incorporates classification outcomes into routing decisions. Simulations demonstrate that our framework significantly improves network throughput, reduces latency, and enhances packet delivery ratios while maintaining low jitter. Furthermore, it achieves a high detection rate, minimal false positives, and swift response to security incidents, thereby robustly securing the RPL protocol and enhancing QoS in IoT-enabled wireless sensor networks. The findings of this research offer substantial contributions to the field, providing a comprehensive solution to strengthen RPL against prevalent security threats.</p></div>","PeriodicalId":21733,"journal":{"name":"Sensors International","volume":"5 ","pages":"Article 100289"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666351124000111/pdfft?md5=8afdc69da9838ca522505371879548fa&pid=1-s2.0-S2666351124000111-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Machine learning for QoS and security enhancement of RPL in IoT-Enabled wireless sensors\",\"authors\":\"Abubakar Wakili,&nbsp;Sara Bakkali,&nbsp;Ahmed El Hilali Alaoui\",\"doi\":\"10.1016/j.sintl.2024.100289\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Internet of Things (IoT) networks rely on wireless sensors for data collection and transmission, making them vulnerable to security threats that undermine their Quality of Service (QoS). The Routing Protocol for Low-Power and Lossy Networks (RPL) is crucial for efficient data transmission in IoT networks, but its performance can be significantly degraded by attacks such as Rank, Sinkhole and Wormhole attacks. These threats disrupt network integrity by manipulating routing information, attracting traffic through malicious nodes and tunneling data to malicious endpoints. This paper presents a novel machine learning-based framework to enhance RPL's security and QoS. Our approach integrates a random forest model for precise traffic classification, a reinforcement learning module for dynamic and adaptive routing, and a modified RPL objective function that incorporates classification outcomes into routing decisions. Simulations demonstrate that our framework significantly improves network throughput, reduces latency, and enhances packet delivery ratios while maintaining low jitter. Furthermore, it achieves a high detection rate, minimal false positives, and swift response to security incidents, thereby robustly securing the RPL protocol and enhancing QoS in IoT-enabled wireless sensor networks. The findings of this research offer substantial contributions to the field, providing a comprehensive solution to strengthen RPL against prevalent security threats.</p></div>\",\"PeriodicalId\":21733,\"journal\":{\"name\":\"Sensors International\",\"volume\":\"5 \",\"pages\":\"Article 100289\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666351124000111/pdfft?md5=8afdc69da9838ca522505371879548fa&pid=1-s2.0-S2666351124000111-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors International\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666351124000111\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors International","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666351124000111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

物联网(IoT)网络依赖无线传感器进行数据收集和传输,因此很容易受到安全威胁,从而破坏其服务质量(QoS)。低功耗和低损耗网络路由协议(RPL)对于物联网网络中的高效数据传输至关重要,但其性能会因 Rank、Sinkhole 和 Wormhole 攻击等攻击而大幅降低。这些威胁通过篡改路由信息、通过恶意节点吸引流量以及向恶意端点隧道传输数据来破坏网络的完整性。本文提出了一种新颖的基于机器学习的框架,以增强 RPL 的安全性和 QoS。我们的方法集成了用于精确流量分类的随机森林模型、用于动态和自适应路由选择的强化学习模块,以及将分类结果纳入路由选择决策的修正 RPL 目标函数。仿真结果表明,我们的框架在保持低抖动的同时,显著提高了网络吞吐量,减少了延迟,提高了数据包传送率。此外,它还实现了高检测率、最小误报率和对安全事件的快速响应,从而确保了 RPL 协议的稳健安全,并提高了物联网无线传感器网络的 QoS。这项研究成果为该领域做出了重大贡献,提供了一个全面的解决方案来加强 RPL 的安全性,抵御普遍存在的安全威胁。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine learning for QoS and security enhancement of RPL in IoT-Enabled wireless sensors

Internet of Things (IoT) networks rely on wireless sensors for data collection and transmission, making them vulnerable to security threats that undermine their Quality of Service (QoS). The Routing Protocol for Low-Power and Lossy Networks (RPL) is crucial for efficient data transmission in IoT networks, but its performance can be significantly degraded by attacks such as Rank, Sinkhole and Wormhole attacks. These threats disrupt network integrity by manipulating routing information, attracting traffic through malicious nodes and tunneling data to malicious endpoints. This paper presents a novel machine learning-based framework to enhance RPL's security and QoS. Our approach integrates a random forest model for precise traffic classification, a reinforcement learning module for dynamic and adaptive routing, and a modified RPL objective function that incorporates classification outcomes into routing decisions. Simulations demonstrate that our framework significantly improves network throughput, reduces latency, and enhances packet delivery ratios while maintaining low jitter. Furthermore, it achieves a high detection rate, minimal false positives, and swift response to security incidents, thereby robustly securing the RPL protocol and enhancing QoS in IoT-enabled wireless sensor networks. The findings of this research offer substantial contributions to the field, providing a comprehensive solution to strengthen RPL against prevalent security threats.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
17.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信