近谷地下车站振动台试验:地下连续墙的影响

IF 6.7 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
{"title":"近谷地下车站振动台试验:地下连续墙的影响","authors":"","doi":"10.1016/j.tust.2024.106030","DOIUrl":null,"url":null,"abstract":"<div><p>Diaphragm walls are commonly employed as a permanent support for the building of metro stations near urban valley, and in conjunction with the interior sidewalls of the station structure to withstand the pressure from surrounding soils. Despite their prevalent use, the effect of underground diaphragm walls on the seismic response of stations is not yet fully understood. In this paper, a series of 1-g shaking table tests is designed to investigate the seismic response of a near-valley station with underground diaphragm walls within the elastic range. Modeling the stratum-structure-diaphragm walls system is accomplished by employing granular concrete reinforced with galvanized steel wires and synthetic model soils, and a station without diaphragm walls is included, serving as a benchmark for comparative analysis to understand the influence of diaphragm walls on the seismic behavior of the station. The experiment was designed for three depth-to-width ratios (DWRs), i.e. 1/3, 1/4, and 1/8, of arc-shaped valley topography, as well as the seismic excitations for the test include actual seismic records with the amplitude of 0.2 g, 0.4 g, and 0.8 g, respectively. Results show that the underground diaphragm walls enhance the lateral stiffness of the near-valley station compared to structures without diaphragm walls, and thus significantly reducing the racking deformation of structure during earthquakes. The presence of diaphragm wall would decrease the amplification of dynamic earth pressure caused by valley effect at the structural sidewalls, and significantly reduce the lateral vibration and shear effect of the station near a valley with a larger DWR. Notably, bending moment response at the connection between the diaphragm walls and structural sidewalls are dramatically amplified under strong seismic loading, and such adverse effects gradually increase with the DWR of the valley.</p></div>","PeriodicalId":49414,"journal":{"name":"Tunnelling and Underground Space Technology","volume":null,"pages":null},"PeriodicalIF":6.7000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shaking table test for near-valley underground station: Influence of diaphragm walls\",\"authors\":\"\",\"doi\":\"10.1016/j.tust.2024.106030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Diaphragm walls are commonly employed as a permanent support for the building of metro stations near urban valley, and in conjunction with the interior sidewalls of the station structure to withstand the pressure from surrounding soils. Despite their prevalent use, the effect of underground diaphragm walls on the seismic response of stations is not yet fully understood. In this paper, a series of 1-g shaking table tests is designed to investigate the seismic response of a near-valley station with underground diaphragm walls within the elastic range. Modeling the stratum-structure-diaphragm walls system is accomplished by employing granular concrete reinforced with galvanized steel wires and synthetic model soils, and a station without diaphragm walls is included, serving as a benchmark for comparative analysis to understand the influence of diaphragm walls on the seismic behavior of the station. The experiment was designed for three depth-to-width ratios (DWRs), i.e. 1/3, 1/4, and 1/8, of arc-shaped valley topography, as well as the seismic excitations for the test include actual seismic records with the amplitude of 0.2 g, 0.4 g, and 0.8 g, respectively. Results show that the underground diaphragm walls enhance the lateral stiffness of the near-valley station compared to structures without diaphragm walls, and thus significantly reducing the racking deformation of structure during earthquakes. The presence of diaphragm wall would decrease the amplification of dynamic earth pressure caused by valley effect at the structural sidewalls, and significantly reduce the lateral vibration and shear effect of the station near a valley with a larger DWR. Notably, bending moment response at the connection between the diaphragm walls and structural sidewalls are dramatically amplified under strong seismic loading, and such adverse effects gradually increase with the DWR of the valley.</p></div>\",\"PeriodicalId\":49414,\"journal\":{\"name\":\"Tunnelling and Underground Space Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tunnelling and Underground Space Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0886779824004486\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tunnelling and Underground Space Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0886779824004486","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

地下连续墙通常用作城市谷地附近地铁站建筑的永久支撑,并与地铁站结构的内部侧墙一起承受来自周围土壤的压力。尽管地下连续墙的使用非常普遍,但人们对其对车站地震响应的影响尚未完全了解。本文设计了一系列 1g 振动台试验,以研究在弹性范围内使用地下连续墙的近谷车站的地震响应。地层-结构-地下连续墙系统的建模是通过采用镀锌钢丝加固的粒状混凝土和合成模型土来完成的,同时还包括一个无地下连续墙的车站,作为比较分析的基准,以了解地下连续墙对车站地震行为的影响。试验针对弧形山谷地形设计了三种深宽比(DWR),即 1/3、1/4 和 1/8,试验的地震激励包括振幅分别为 0.2 g、0.4 g 和 0.8 g 的实际地震记录。结果表明,与没有地下连续墙的结构相比,地下连续墙增强了近谷车站的侧向刚度,从而大大减少了地震时结构的挤压变形。地下连续墙的存在可减少山谷效应在结构侧墙处引起的动土压力的放大,并显著降低近山谷车站的侧向振动和剪切效应,降低较大的地下水位。值得注意的是,在强地震荷载作用下,地下连续墙与结构侧墙连接处的弯矩响应会急剧放大,而且这种不利影响会随着山谷载荷比的增大而逐渐增大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Shaking table test for near-valley underground station: Influence of diaphragm walls

Diaphragm walls are commonly employed as a permanent support for the building of metro stations near urban valley, and in conjunction with the interior sidewalls of the station structure to withstand the pressure from surrounding soils. Despite their prevalent use, the effect of underground diaphragm walls on the seismic response of stations is not yet fully understood. In this paper, a series of 1-g shaking table tests is designed to investigate the seismic response of a near-valley station with underground diaphragm walls within the elastic range. Modeling the stratum-structure-diaphragm walls system is accomplished by employing granular concrete reinforced with galvanized steel wires and synthetic model soils, and a station without diaphragm walls is included, serving as a benchmark for comparative analysis to understand the influence of diaphragm walls on the seismic behavior of the station. The experiment was designed for three depth-to-width ratios (DWRs), i.e. 1/3, 1/4, and 1/8, of arc-shaped valley topography, as well as the seismic excitations for the test include actual seismic records with the amplitude of 0.2 g, 0.4 g, and 0.8 g, respectively. Results show that the underground diaphragm walls enhance the lateral stiffness of the near-valley station compared to structures without diaphragm walls, and thus significantly reducing the racking deformation of structure during earthquakes. The presence of diaphragm wall would decrease the amplification of dynamic earth pressure caused by valley effect at the structural sidewalls, and significantly reduce the lateral vibration and shear effect of the station near a valley with a larger DWR. Notably, bending moment response at the connection between the diaphragm walls and structural sidewalls are dramatically amplified under strong seismic loading, and such adverse effects gradually increase with the DWR of the valley.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tunnelling and Underground Space Technology
Tunnelling and Underground Space Technology 工程技术-工程:土木
CiteScore
11.90
自引率
18.80%
发文量
454
审稿时长
10.8 months
期刊介绍: Tunnelling and Underground Space Technology is an international journal which publishes authoritative articles encompassing the development of innovative uses of underground space and the results of high quality research into improved, more cost-effective techniques for the planning, geo-investigation, design, construction, operation and maintenance of underground and earth-sheltered structures. The journal provides an effective vehicle for the improved worldwide exchange of information on developments in underground technology - and the experience gained from its use - and is strongly committed to publishing papers on the interdisciplinary aspects of creating, planning, and regulating underground space.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信