通过引发树木空洞来使苏格兰松树老化:接种真菌关键种 Porodaedalia pini

IF 1.9 3区 环境科学与生态学 Q3 ECOLOGY
{"title":"通过引发树木空洞来使苏格兰松树老化:接种真菌关键种 Porodaedalia pini","authors":"","doi":"10.1016/j.funeco.2024.101375","DOIUrl":null,"url":null,"abstract":"<div><p>Hollow trees are crucial for forest biodiversity but are becoming increasingly rare in many ecosystems, including the Scots pine forests of northern Europe. Here, we inoculated heartwood of live Scots pine trees with the fungal keystone species <em>Porodaedalia pini</em> to initiate tree hollowing. The fungus was inoculated in 50-, 110- and 170-year old stands, using wood dowels containing mycelia. Three different strains were used to test for intraspecific variation. Molecular analysis of samples from inoculated trees seven years after treatment showed that 67% were successfully colonised, with no differences between stands. Fungal strain had no effect on colonisation success. Our findings suggest that inoculation with <em>P. pini</em> has the potential to be an efficient method to restore a key ecological process, tree hollowing, in degraded Scots pine forests. The possibility of initiating the process even in young trees may be a way to accelerate the formation of hollow pines in younger forests.</p></div>","PeriodicalId":55136,"journal":{"name":"Fungal Ecology","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1754504824000461/pdfft?md5=f8d6f2a79178ca30e86267ee49992fac&pid=1-s2.0-S1754504824000461-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Veteranising Scots pine trees by initiating tree hollowing: Inoculation with the fungal keystone species Porodaedalia pini\",\"authors\":\"\",\"doi\":\"10.1016/j.funeco.2024.101375\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Hollow trees are crucial for forest biodiversity but are becoming increasingly rare in many ecosystems, including the Scots pine forests of northern Europe. Here, we inoculated heartwood of live Scots pine trees with the fungal keystone species <em>Porodaedalia pini</em> to initiate tree hollowing. The fungus was inoculated in 50-, 110- and 170-year old stands, using wood dowels containing mycelia. Three different strains were used to test for intraspecific variation. Molecular analysis of samples from inoculated trees seven years after treatment showed that 67% were successfully colonised, with no differences between stands. Fungal strain had no effect on colonisation success. Our findings suggest that inoculation with <em>P. pini</em> has the potential to be an efficient method to restore a key ecological process, tree hollowing, in degraded Scots pine forests. The possibility of initiating the process even in young trees may be a way to accelerate the formation of hollow pines in younger forests.</p></div>\",\"PeriodicalId\":55136,\"journal\":{\"name\":\"Fungal Ecology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1754504824000461/pdfft?md5=f8d6f2a79178ca30e86267ee49992fac&pid=1-s2.0-S1754504824000461-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fungal Ecology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1754504824000461\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fungal Ecology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1754504824000461","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

空心树对森林生物多样性至关重要,但在包括北欧苏格兰松树林在内的许多生态系统中却越来越罕见。在这里,我们在活苏格兰松树的心材上接种了真菌基干物种 Porodaedalia pini,以启动树木中空。在树龄分别为 50 年、110 年和 170 年的林木中,使用含有菌丝体的木钉接种真菌。使用了三种不同的菌株来测试种内变异。处理七年后,对接种树木样本的分子分析表明,67% 的树木成功定殖,不同林分之间没有差异。真菌菌株对定植成功率没有影响。我们的研究结果表明,在退化的苏格兰松树林中接种皮尼真菌有可能成为恢复树木中空这一关键生态过程的有效方法。即使在幼树上也能启动这一过程,这可能是在年轻森林中加速形成空心松的一种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Veteranising Scots pine trees by initiating tree hollowing: Inoculation with the fungal keystone species Porodaedalia pini

Hollow trees are crucial for forest biodiversity but are becoming increasingly rare in many ecosystems, including the Scots pine forests of northern Europe. Here, we inoculated heartwood of live Scots pine trees with the fungal keystone species Porodaedalia pini to initiate tree hollowing. The fungus was inoculated in 50-, 110- and 170-year old stands, using wood dowels containing mycelia. Three different strains were used to test for intraspecific variation. Molecular analysis of samples from inoculated trees seven years after treatment showed that 67% were successfully colonised, with no differences between stands. Fungal strain had no effect on colonisation success. Our findings suggest that inoculation with P. pini has the potential to be an efficient method to restore a key ecological process, tree hollowing, in degraded Scots pine forests. The possibility of initiating the process even in young trees may be a way to accelerate the formation of hollow pines in younger forests.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fungal Ecology
Fungal Ecology 环境科学-生态学
CiteScore
5.80
自引率
3.40%
发文量
51
审稿时长
3 months
期刊介绍: Fungal Ecology publishes investigations into all aspects of fungal ecology, including the following (not exclusive): population dynamics; adaptation; evolution; role in ecosystem functioning, nutrient cycling, decomposition, carbon allocation; ecophysiology; intra- and inter-specific mycelial interactions, fungus-plant (pathogens, mycorrhizas, lichens, endophytes), fungus-invertebrate and fungus-microbe interaction; genomics and (evolutionary) genetics; conservation and biodiversity; remote sensing; bioremediation and biodegradation; quantitative and computational aspects - modelling, indicators, complexity, informatics. The usual prerequisites for publication will be originality, clarity, and significance as relevant to a better understanding of the ecology of fungi.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信