{"title":"褪黑激素在延缓园艺产品采后衰老和保持质量方面的作用。","authors":"Y Liu, J Xu, X Lu, M Huang, W Yu, C Li","doi":"10.1111/plb.13706","DOIUrl":null,"url":null,"abstract":"<p><p>The postharvest lifespan of horticultural products is closely related to loss of nutritional quality, accompanied by a rapid decline in shelf life, commercial value, and marketability. Melatonin (MT) application not only maintains quality but also delays senescence in horticultural products. This paper reviews biosynthesis and metabolism of endogenous MT, summarizes significant effects of exogenous MT application on postharvest horticultural products, examines regulatory mechanisms of MT-mediated effects, and provides an integrated review for understanding the positive role of MT in senescence delay and quality maintenance. As a multifunctional molecule, MT coordinates other signal molecules, such as ABA, ETH, JA, SA, NO, and Ca<sup>2+</sup>, to regulate postharvest ripening and senescence. Several metabolic pathways are involved in regulation of MT during postharvest senescence, including synthesis and signal transduction of plant hormones, redox homeostasis, energy metabolism, carbohydrate metabolism, and degradation of pigment and cell wall components. Moreover, MT regulates expression of genes related to plant hormones, antioxidant systems, energy generation, fruit firmness and colour, membrane integrity, and carbohydrate storage. Consequently, MT could become an emerging and eco-friendly preservative to extend shelf life and maintain postharvest quality of horticultural products.</p>","PeriodicalId":220,"journal":{"name":"Plant Biology","volume":" ","pages":"3-17"},"PeriodicalIF":4.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The role of melatonin in delaying senescence and maintaining quality in postharvest horticultural products.\",\"authors\":\"Y Liu, J Xu, X Lu, M Huang, W Yu, C Li\",\"doi\":\"10.1111/plb.13706\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The postharvest lifespan of horticultural products is closely related to loss of nutritional quality, accompanied by a rapid decline in shelf life, commercial value, and marketability. Melatonin (MT) application not only maintains quality but also delays senescence in horticultural products. This paper reviews biosynthesis and metabolism of endogenous MT, summarizes significant effects of exogenous MT application on postharvest horticultural products, examines regulatory mechanisms of MT-mediated effects, and provides an integrated review for understanding the positive role of MT in senescence delay and quality maintenance. As a multifunctional molecule, MT coordinates other signal molecules, such as ABA, ETH, JA, SA, NO, and Ca<sup>2+</sup>, to regulate postharvest ripening and senescence. Several metabolic pathways are involved in regulation of MT during postharvest senescence, including synthesis and signal transduction of plant hormones, redox homeostasis, energy metabolism, carbohydrate metabolism, and degradation of pigment and cell wall components. Moreover, MT regulates expression of genes related to plant hormones, antioxidant systems, energy generation, fruit firmness and colour, membrane integrity, and carbohydrate storage. Consequently, MT could become an emerging and eco-friendly preservative to extend shelf life and maintain postharvest quality of horticultural products.</p>\",\"PeriodicalId\":220,\"journal\":{\"name\":\"Plant Biology\",\"volume\":\" \",\"pages\":\"3-17\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/plb.13706\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/plb.13706","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/16 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
The role of melatonin in delaying senescence and maintaining quality in postharvest horticultural products.
The postharvest lifespan of horticultural products is closely related to loss of nutritional quality, accompanied by a rapid decline in shelf life, commercial value, and marketability. Melatonin (MT) application not only maintains quality but also delays senescence in horticultural products. This paper reviews biosynthesis and metabolism of endogenous MT, summarizes significant effects of exogenous MT application on postharvest horticultural products, examines regulatory mechanisms of MT-mediated effects, and provides an integrated review for understanding the positive role of MT in senescence delay and quality maintenance. As a multifunctional molecule, MT coordinates other signal molecules, such as ABA, ETH, JA, SA, NO, and Ca2+, to regulate postharvest ripening and senescence. Several metabolic pathways are involved in regulation of MT during postharvest senescence, including synthesis and signal transduction of plant hormones, redox homeostasis, energy metabolism, carbohydrate metabolism, and degradation of pigment and cell wall components. Moreover, MT regulates expression of genes related to plant hormones, antioxidant systems, energy generation, fruit firmness and colour, membrane integrity, and carbohydrate storage. Consequently, MT could become an emerging and eco-friendly preservative to extend shelf life and maintain postharvest quality of horticultural products.
期刊介绍:
Plant Biology is an international journal of broad scope bringing together the different subdisciplines, such as physiology, molecular biology, cell biology, development, genetics, systematics, ecology, evolution, ecophysiology, plant-microbe interactions, and mycology.
Plant Biology publishes original problem-oriented full-length research papers, short research papers, and review articles. Discussion of hot topics and provocative opinion articles are published under the heading Acute Views. From a multidisciplinary perspective, Plant Biology will provide a platform for publication, information and debate, encompassing all areas which fall within the scope of plant science.