Qining Leo Wang, Eric Hyunsung Cho, Jia Li, Hsin-Chuan Huang, Sarath Kin, Yuhao Piao, Lin Xu, Kenneth Tang, Shounak Kuiry, Zifan He, Danning Yu, Brian Cheng, Chang-Chi Wu, Connor Choi, Kwanwoo Shin, Tsung-Yi Ho and Chang-Jin “CJ” Kim
{"title":"基于云的设计和制造平台实现数字微流控民主化","authors":"Qining Leo Wang, Eric Hyunsung Cho, Jia Li, Hsin-Chuan Huang, Sarath Kin, Yuhao Piao, Lin Xu, Kenneth Tang, Shounak Kuiry, Zifan He, Danning Yu, Brian Cheng, Chang-Chi Wu, Connor Choi, Kwanwoo Shin, Tsung-Yi Ho and Chang-Jin “CJ” Kim","doi":"10.1039/D4LC00495G","DOIUrl":null,"url":null,"abstract":"<p >Akin to the impact that digital microelectronics had on electronic devices for information technology, digital microfluidics (DMF) was anticipated to transform fluidic devices for lab-on-a-chip (LoC) applications. However, despite a wealth of research and publications, electrowetting-on-dielectric (EWOD) DMF has not achieved the anticipated wide adoption, and commercialization has been painfully slow. By identifying the technological and resource hurdles in developing DMF chip and control systems as the culprit, we envision democratizing DMF by building a standardized design and manufacturing platform. To achieve this vision, we introduce a proof-of-concept cloud platform that empowers any user to design, obtain, and operate DMF chips (https://edroplets.org). For chip design, we establish a web-based EWOD chip design platform with layout rules and automated wire routing. For chip manufacturing, we build a web-based EWOD chip manufacturing platform and fabricate four types of EWOD chips (<em>i.e.</em>, glass, paper, PCB, and TFT) to demonstrate the foundry service workflow. For chip control, we introduce a compact EWOD control system along with web-based operating software. Although industrial fabrication services are beyond the scope of this work, we hope this perspective will inspire academic and commercial stakeholders to join the initiative toward a DMF ecosystem for the masses.</p>","PeriodicalId":85,"journal":{"name":"Lab on a Chip","volume":null,"pages":null},"PeriodicalIF":6.1000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Democratizing digital microfluidics by a cloud-based design and manufacturing platform\",\"authors\":\"Qining Leo Wang, Eric Hyunsung Cho, Jia Li, Hsin-Chuan Huang, Sarath Kin, Yuhao Piao, Lin Xu, Kenneth Tang, Shounak Kuiry, Zifan He, Danning Yu, Brian Cheng, Chang-Chi Wu, Connor Choi, Kwanwoo Shin, Tsung-Yi Ho and Chang-Jin “CJ” Kim\",\"doi\":\"10.1039/D4LC00495G\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Akin to the impact that digital microelectronics had on electronic devices for information technology, digital microfluidics (DMF) was anticipated to transform fluidic devices for lab-on-a-chip (LoC) applications. However, despite a wealth of research and publications, electrowetting-on-dielectric (EWOD) DMF has not achieved the anticipated wide adoption, and commercialization has been painfully slow. By identifying the technological and resource hurdles in developing DMF chip and control systems as the culprit, we envision democratizing DMF by building a standardized design and manufacturing platform. To achieve this vision, we introduce a proof-of-concept cloud platform that empowers any user to design, obtain, and operate DMF chips (https://edroplets.org). For chip design, we establish a web-based EWOD chip design platform with layout rules and automated wire routing. For chip manufacturing, we build a web-based EWOD chip manufacturing platform and fabricate four types of EWOD chips (<em>i.e.</em>, glass, paper, PCB, and TFT) to demonstrate the foundry service workflow. For chip control, we introduce a compact EWOD control system along with web-based operating software. Although industrial fabrication services are beyond the scope of this work, we hope this perspective will inspire academic and commercial stakeholders to join the initiative toward a DMF ecosystem for the masses.</p>\",\"PeriodicalId\":85,\"journal\":{\"name\":\"Lab on a Chip\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lab on a Chip\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/lc/d4lc00495g\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lab on a Chip","FirstCategoryId":"5","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/lc/d4lc00495g","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Democratizing digital microfluidics by a cloud-based design and manufacturing platform
Akin to the impact that digital microelectronics had on electronic devices for information technology, digital microfluidics (DMF) was anticipated to transform fluidic devices for lab-on-a-chip (LoC) applications. However, despite a wealth of research and publications, electrowetting-on-dielectric (EWOD) DMF has not achieved the anticipated wide adoption, and commercialization has been painfully slow. By identifying the technological and resource hurdles in developing DMF chip and control systems as the culprit, we envision democratizing DMF by building a standardized design and manufacturing platform. To achieve this vision, we introduce a proof-of-concept cloud platform that empowers any user to design, obtain, and operate DMF chips (https://edroplets.org). For chip design, we establish a web-based EWOD chip design platform with layout rules and automated wire routing. For chip manufacturing, we build a web-based EWOD chip manufacturing platform and fabricate four types of EWOD chips (i.e., glass, paper, PCB, and TFT) to demonstrate the foundry service workflow. For chip control, we introduce a compact EWOD control system along with web-based operating software. Although industrial fabrication services are beyond the scope of this work, we hope this perspective will inspire academic and commercial stakeholders to join the initiative toward a DMF ecosystem for the masses.
期刊介绍:
Lab on a Chip is the premiere journal that publishes cutting-edge research in the field of miniaturization. By their very nature, microfluidic/nanofluidic/miniaturized systems are at the intersection of disciplines, spanning fundamental research to high-end application, which is reflected by the broad readership of the journal. Lab on a Chip publishes two types of papers on original research: full-length research papers and communications. Papers should demonstrate innovations, which can come from technical advancements or applications addressing pressing needs in globally important areas. The journal also publishes Comments, Reviews, and Perspectives.