{"title":"铝和钽氧化物表面原子层沉积钌的表面化学反应","authors":"","doi":"10.1016/j.susc.2024.122572","DOIUrl":null,"url":null,"abstract":"<div><p>The surface chemistry of Ru atomic layer deposition (ALD) processes based on the use of tris(2,2,6,6-tetramethyl-3,5-heptanedionato)ruthenium(III) (Ru(tmhd)<sub>3</sub>) and either molecular oxygen or atomic hydrogen on aluminum oxide films was characterized by a combination of surface-sensitive techniques. The thermal decomposition of the Ru metalorganic precursor was determined, by using a combination of reflection-absorption infrared spectroscopy (RAIRS), temperature programmed desorption (TPD), and X-ray photoelectron spectroscopy (XPS), to start below 400 K and to take place in a stepwise fashion over a wide range of temperatures. Gas-phase products from this chemistry include 2,2,6,6-tetramethyl-3,5-heptanedione (the protonated ligand, Htmhd; in a TPD peak at 520 K), isobutene (540 K; indicating the fragmentation of the organic ligands), and other products from isomerization and/or aldol condensation (650 and 730 K). This chemistry is accompanied by the reduction of the Ru<sup>3+</sup> ions in two stages, involving the loss of some of their ligands and their direct bonding to the substrate first (between 500 and 600 K) and a full reduction to a metallic state later on (600–700 K). ALD cycles using either molecular oxygen or atomic hydrogen resulted in the slow build-up of Ru on the surface, but the co-deposition of carbon could not be avoided, at least in the initial cycles, while the alumina surface was still exposed. With O<sub>2</sub>, the Ru atoms alternate between partially-oxidized (after the O<sub>2</sub> exposures) and zero-valent (after the Ru(tmhd)<sub>3</sub> doses) states, and some Ru loss in the form of the volatile RuO<sub>4</sub> oxide was seen after the second half of the ALD cycles; neither the Ru oxidation state alternation nor the elimination of some Ru from the surface were observed when using H·. The deposited Ru was determined, by combining results from angle-resolved XPS (ARXPS) and low-energy ion scattering (LEIS) experiments, to grow as 3D nanoparticles rather than as a layer-by-layer 2D film, presumably because the Ru precursor preferentially adsorbs (and decomposes more cleanly) on the metal surface. A discussion is provided of the implications of these results for the design of ALD processes.</p></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The surface chemistry of the atomic layer deposition of ruthenium on aluminum and tantalum oxide surfaces\",\"authors\":\"\",\"doi\":\"10.1016/j.susc.2024.122572\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The surface chemistry of Ru atomic layer deposition (ALD) processes based on the use of tris(2,2,6,6-tetramethyl-3,5-heptanedionato)ruthenium(III) (Ru(tmhd)<sub>3</sub>) and either molecular oxygen or atomic hydrogen on aluminum oxide films was characterized by a combination of surface-sensitive techniques. The thermal decomposition of the Ru metalorganic precursor was determined, by using a combination of reflection-absorption infrared spectroscopy (RAIRS), temperature programmed desorption (TPD), and X-ray photoelectron spectroscopy (XPS), to start below 400 K and to take place in a stepwise fashion over a wide range of temperatures. Gas-phase products from this chemistry include 2,2,6,6-tetramethyl-3,5-heptanedione (the protonated ligand, Htmhd; in a TPD peak at 520 K), isobutene (540 K; indicating the fragmentation of the organic ligands), and other products from isomerization and/or aldol condensation (650 and 730 K). This chemistry is accompanied by the reduction of the Ru<sup>3+</sup> ions in two stages, involving the loss of some of their ligands and their direct bonding to the substrate first (between 500 and 600 K) and a full reduction to a metallic state later on (600–700 K). ALD cycles using either molecular oxygen or atomic hydrogen resulted in the slow build-up of Ru on the surface, but the co-deposition of carbon could not be avoided, at least in the initial cycles, while the alumina surface was still exposed. With O<sub>2</sub>, the Ru atoms alternate between partially-oxidized (after the O<sub>2</sub> exposures) and zero-valent (after the Ru(tmhd)<sub>3</sub> doses) states, and some Ru loss in the form of the volatile RuO<sub>4</sub> oxide was seen after the second half of the ALD cycles; neither the Ru oxidation state alternation nor the elimination of some Ru from the surface were observed when using H·. The deposited Ru was determined, by combining results from angle-resolved XPS (ARXPS) and low-energy ion scattering (LEIS) experiments, to grow as 3D nanoparticles rather than as a layer-by-layer 2D film, presumably because the Ru precursor preferentially adsorbs (and decomposes more cleanly) on the metal surface. A discussion is provided of the implications of these results for the design of ALD processes.</p></div>\",\"PeriodicalId\":22100,\"journal\":{\"name\":\"Surface Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surface Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0039602824001237\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0039602824001237","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
The surface chemistry of the atomic layer deposition of ruthenium on aluminum and tantalum oxide surfaces
The surface chemistry of Ru atomic layer deposition (ALD) processes based on the use of tris(2,2,6,6-tetramethyl-3,5-heptanedionato)ruthenium(III) (Ru(tmhd)3) and either molecular oxygen or atomic hydrogen on aluminum oxide films was characterized by a combination of surface-sensitive techniques. The thermal decomposition of the Ru metalorganic precursor was determined, by using a combination of reflection-absorption infrared spectroscopy (RAIRS), temperature programmed desorption (TPD), and X-ray photoelectron spectroscopy (XPS), to start below 400 K and to take place in a stepwise fashion over a wide range of temperatures. Gas-phase products from this chemistry include 2,2,6,6-tetramethyl-3,5-heptanedione (the protonated ligand, Htmhd; in a TPD peak at 520 K), isobutene (540 K; indicating the fragmentation of the organic ligands), and other products from isomerization and/or aldol condensation (650 and 730 K). This chemistry is accompanied by the reduction of the Ru3+ ions in two stages, involving the loss of some of their ligands and their direct bonding to the substrate first (between 500 and 600 K) and a full reduction to a metallic state later on (600–700 K). ALD cycles using either molecular oxygen or atomic hydrogen resulted in the slow build-up of Ru on the surface, but the co-deposition of carbon could not be avoided, at least in the initial cycles, while the alumina surface was still exposed. With O2, the Ru atoms alternate between partially-oxidized (after the O2 exposures) and zero-valent (after the Ru(tmhd)3 doses) states, and some Ru loss in the form of the volatile RuO4 oxide was seen after the second half of the ALD cycles; neither the Ru oxidation state alternation nor the elimination of some Ru from the surface were observed when using H·. The deposited Ru was determined, by combining results from angle-resolved XPS (ARXPS) and low-energy ion scattering (LEIS) experiments, to grow as 3D nanoparticles rather than as a layer-by-layer 2D film, presumably because the Ru precursor preferentially adsorbs (and decomposes more cleanly) on the metal surface. A discussion is provided of the implications of these results for the design of ALD processes.
期刊介绍:
Surface Science is devoted to elucidating the fundamental aspects of chemistry and physics occurring at a wide range of surfaces and interfaces and to disseminating this knowledge fast. The journal welcomes a broad spectrum of topics, including but not limited to:
• model systems (e.g. in Ultra High Vacuum) under well-controlled reactive conditions
• nanoscale science and engineering, including manipulation of matter at the atomic/molecular scale and assembly phenomena
• reactivity of surfaces as related to various applied areas including heterogeneous catalysis, chemistry at electrified interfaces, and semiconductors functionalization
• phenomena at interfaces relevant to energy storage and conversion, and fuels production and utilization
• surface reactivity for environmental protection and pollution remediation
• interactions at surfaces of soft matter, including polymers and biomaterials.
Both experimental and theoretical work, including modeling, is within the scope of the journal. Work published in Surface Science reaches a wide readership, from chemistry and physics to biology and materials science and engineering, providing an excellent forum for cross-fertilization of ideas and broad dissemination of scientific discoveries.