{"title":"使用交联接触和释放活性有机烷氧基硅烷的 PDMS 网络涂层的海洋生物污损缓解作用","authors":"","doi":"10.1016/j.porgcoat.2024.108743","DOIUrl":null,"url":null,"abstract":"<div><p>Poly (dimethylsiloxane) (PDMS) elastomer is one of key polymer resins for fouling release (FR) coatings, but it shows extremely poor antifouling (AF) activity in seawater since bacteria and diatoms could readily attach to surface. Modifying PDMS-based coatings via incorporating antifouling additives is effective for enhancing overall FR and AF activity. In this work, we prepared a well-defined organoalkoxysilane coating additive with quaternary ammonium and benzoisothiazolinone pendent groups, and the synthesized copolymers were covalently conjugated onto PDMS network in a one-pot reaction. AF and FR activities of the modified PDMS coatings were studied against soft fouling microorganisms. When microorganisms come into contact the coating surface, contact-active action mode works, quaternary ammonium groups could cause bacteria cell membrane disruption and microalgae photosynthesize inhibition via positive charge. Unexpectedly, a surprisingly lasting antimicrobial efficiency could be still observed in the neighboring coating, even the top-surface was completely covered with bacteria biofilm. Chemically conjugated benzoisothiazolinone could be sustainably released via side-group hydrolysis, thus, repelling and preventing the planktonic foulings from approaching the coating surface via release-active action mode. The modified PDMS coating with dual antifouling action modes could inhibit the biofilm formation at solid-liquid-air three-phase contact line, and could find valuable applications in marine transportation, water treatment and other antifouling fields.</p></div>","PeriodicalId":20834,"journal":{"name":"Progress in Organic Coatings","volume":null,"pages":null},"PeriodicalIF":6.5000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Marine biofouling mitigation of PDMS-based network coating with cross-linked contact- and release-active organoalkoxysilane\",\"authors\":\"\",\"doi\":\"10.1016/j.porgcoat.2024.108743\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Poly (dimethylsiloxane) (PDMS) elastomer is one of key polymer resins for fouling release (FR) coatings, but it shows extremely poor antifouling (AF) activity in seawater since bacteria and diatoms could readily attach to surface. Modifying PDMS-based coatings via incorporating antifouling additives is effective for enhancing overall FR and AF activity. In this work, we prepared a well-defined organoalkoxysilane coating additive with quaternary ammonium and benzoisothiazolinone pendent groups, and the synthesized copolymers were covalently conjugated onto PDMS network in a one-pot reaction. AF and FR activities of the modified PDMS coatings were studied against soft fouling microorganisms. When microorganisms come into contact the coating surface, contact-active action mode works, quaternary ammonium groups could cause bacteria cell membrane disruption and microalgae photosynthesize inhibition via positive charge. Unexpectedly, a surprisingly lasting antimicrobial efficiency could be still observed in the neighboring coating, even the top-surface was completely covered with bacteria biofilm. Chemically conjugated benzoisothiazolinone could be sustainably released via side-group hydrolysis, thus, repelling and preventing the planktonic foulings from approaching the coating surface via release-active action mode. The modified PDMS coating with dual antifouling action modes could inhibit the biofilm formation at solid-liquid-air three-phase contact line, and could find valuable applications in marine transportation, water treatment and other antifouling fields.</p></div>\",\"PeriodicalId\":20834,\"journal\":{\"name\":\"Progress in Organic Coatings\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2024-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Organic Coatings\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0300944024005356\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Organic Coatings","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0300944024005356","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Marine biofouling mitigation of PDMS-based network coating with cross-linked contact- and release-active organoalkoxysilane
Poly (dimethylsiloxane) (PDMS) elastomer is one of key polymer resins for fouling release (FR) coatings, but it shows extremely poor antifouling (AF) activity in seawater since bacteria and diatoms could readily attach to surface. Modifying PDMS-based coatings via incorporating antifouling additives is effective for enhancing overall FR and AF activity. In this work, we prepared a well-defined organoalkoxysilane coating additive with quaternary ammonium and benzoisothiazolinone pendent groups, and the synthesized copolymers were covalently conjugated onto PDMS network in a one-pot reaction. AF and FR activities of the modified PDMS coatings were studied against soft fouling microorganisms. When microorganisms come into contact the coating surface, contact-active action mode works, quaternary ammonium groups could cause bacteria cell membrane disruption and microalgae photosynthesize inhibition via positive charge. Unexpectedly, a surprisingly lasting antimicrobial efficiency could be still observed in the neighboring coating, even the top-surface was completely covered with bacteria biofilm. Chemically conjugated benzoisothiazolinone could be sustainably released via side-group hydrolysis, thus, repelling and preventing the planktonic foulings from approaching the coating surface via release-active action mode. The modified PDMS coating with dual antifouling action modes could inhibit the biofilm formation at solid-liquid-air three-phase contact line, and could find valuable applications in marine transportation, water treatment and other antifouling fields.
期刊介绍:
The aim of this international journal is to analyse and publicise the progress and current state of knowledge in the field of organic coatings and related materials. The Editors and the Editorial Board members will solicit both review and research papers from academic and industrial scientists who are actively engaged in research and development or, in the case of review papers, have extensive experience in the subject to be reviewed. Unsolicited manuscripts will be accepted if they meet the journal''s requirements. The journal publishes papers dealing with such subjects as:
• Chemical, physical and technological properties of organic coatings and related materials
• Problems and methods of preparation, manufacture and application of these materials
• Performance, testing and analysis.