常用电介质基底材料在从远红外到紫外线的宽光谱范围内的光学特性

IF 2.4 4区 物理与天体物理 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Minjae Kim, Hong Gu Lee, Eilho Jung, Jungseek Hwang
{"title":"常用电介质基底材料在从远红外到紫外线的宽光谱范围内的光学特性","authors":"Minjae Kim,&nbsp;Hong Gu Lee,&nbsp;Eilho Jung,&nbsp;Jungseek Hwang","doi":"10.1016/j.cap.2024.08.008","DOIUrl":null,"url":null,"abstract":"<div><p>We investigated the optical properties of 13 different dielectric materials (slide glass, quartz, Al<sub>2</sub>O<sub>3</sub> (c-cut), DyScO<sub>3</sub> (110), KTaO<sub>3</sub> (001), LaAlO<sub>3</sub> (001), (LaAlO<sub>3</sub>)<sub>0.3</sub>-(Sr<sub>2</sub>AlTaO<sub>6</sub>)<sub>0.7</sub> (001) (LSAT), MgF<sub>2</sub> (100), MgO (100), SiC, SrTiO<sub>3</sub> (001), TbScO<sub>3</sub> (110), and TiO<sub>2</sub>). The single-bounce reflectance spectra of the bulk samples were measured using Fourier transform infrared (FTIR) and monochromatic spectrometers across a wide spectral range, from far infrared to ultraviolet (80–50,000 cm<sup>−1</sup>). Using the Kramers–Kronig analysis, we obtained the optical conductivity and dielectric function of the dielectric materials from their measured reflectance spectra. Moreover, we measured the transmittance spectra of the materials to obtain their bandgaps. We fitted the measured reflectance spectra using the Lorentz model to obtain phononic structures. Each dielectric material exhibits unique phononic structures and optical bandgaps, associated with the composition and crystal structure of the material. The observed optical properties of these dielectric materials provide valuable information for the optical analysis of thin films grown on them.</p></div>","PeriodicalId":11037,"journal":{"name":"Current Applied Physics","volume":"67 ","pages":"Pages 115-122"},"PeriodicalIF":2.4000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optical properties of popular dielectric substrate materials in a wide spectral range from far-infrared to ultraviolet\",\"authors\":\"Minjae Kim,&nbsp;Hong Gu Lee,&nbsp;Eilho Jung,&nbsp;Jungseek Hwang\",\"doi\":\"10.1016/j.cap.2024.08.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We investigated the optical properties of 13 different dielectric materials (slide glass, quartz, Al<sub>2</sub>O<sub>3</sub> (c-cut), DyScO<sub>3</sub> (110), KTaO<sub>3</sub> (001), LaAlO<sub>3</sub> (001), (LaAlO<sub>3</sub>)<sub>0.3</sub>-(Sr<sub>2</sub>AlTaO<sub>6</sub>)<sub>0.7</sub> (001) (LSAT), MgF<sub>2</sub> (100), MgO (100), SiC, SrTiO<sub>3</sub> (001), TbScO<sub>3</sub> (110), and TiO<sub>2</sub>). The single-bounce reflectance spectra of the bulk samples were measured using Fourier transform infrared (FTIR) and monochromatic spectrometers across a wide spectral range, from far infrared to ultraviolet (80–50,000 cm<sup>−1</sup>). Using the Kramers–Kronig analysis, we obtained the optical conductivity and dielectric function of the dielectric materials from their measured reflectance spectra. Moreover, we measured the transmittance spectra of the materials to obtain their bandgaps. We fitted the measured reflectance spectra using the Lorentz model to obtain phononic structures. Each dielectric material exhibits unique phononic structures and optical bandgaps, associated with the composition and crystal structure of the material. The observed optical properties of these dielectric materials provide valuable information for the optical analysis of thin films grown on them.</p></div>\",\"PeriodicalId\":11037,\"journal\":{\"name\":\"Current Applied Physics\",\"volume\":\"67 \",\"pages\":\"Pages 115-122\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Applied Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1567173924001822\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567173924001822","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了 13 种不同介电材料(玻片、石英、Al2O3 (c-cut)、DyScO3 (110)、KTaO3 (001)、LaAlO3 (001)、(LaAlO3)0.3-(Sr2AlTaO6)0.7 (001) (LSAT)、MgF2 (100)、MgO (100)、SiC、SrTiO3 (001)、TbScO3 (110) 和 TiO2)的光学特性。使用傅立叶变换红外(FTIR)和单色光谱仪测量了块状样品的单次反射光谱,光谱范围很广,从远红外到紫外(80-50,000 cm-1)。利用克雷默-克罗尼格分析法,我们从测量到的反射光谱中获得了电介质材料的光导率和介电函数。此外,我们还测量了材料的透射光谱,以获得它们的带隙。我们利用洛伦兹模型对测量到的反射光谱进行拟合,以获得声波结构。每种介电材料都表现出独特的声波结构和光学带隙,这与材料的成分和晶体结构有关。观察到的这些介电材料的光学特性为在其上生长的薄膜的光学分析提供了宝贵的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Optical properties of popular dielectric substrate materials in a wide spectral range from far-infrared to ultraviolet

Optical properties of popular dielectric substrate materials in a wide spectral range from far-infrared to ultraviolet

We investigated the optical properties of 13 different dielectric materials (slide glass, quartz, Al2O3 (c-cut), DyScO3 (110), KTaO3 (001), LaAlO3 (001), (LaAlO3)0.3-(Sr2AlTaO6)0.7 (001) (LSAT), MgF2 (100), MgO (100), SiC, SrTiO3 (001), TbScO3 (110), and TiO2). The single-bounce reflectance spectra of the bulk samples were measured using Fourier transform infrared (FTIR) and monochromatic spectrometers across a wide spectral range, from far infrared to ultraviolet (80–50,000 cm−1). Using the Kramers–Kronig analysis, we obtained the optical conductivity and dielectric function of the dielectric materials from their measured reflectance spectra. Moreover, we measured the transmittance spectra of the materials to obtain their bandgaps. We fitted the measured reflectance spectra using the Lorentz model to obtain phononic structures. Each dielectric material exhibits unique phononic structures and optical bandgaps, associated with the composition and crystal structure of the material. The observed optical properties of these dielectric materials provide valuable information for the optical analysis of thin films grown on them.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Applied Physics
Current Applied Physics 物理-材料科学:综合
CiteScore
4.80
自引率
0.00%
发文量
213
审稿时长
33 days
期刊介绍: Current Applied Physics (Curr. Appl. Phys.) is a monthly published international journal covering all the fields of applied science investigating the physics of the advanced materials for future applications. Other areas covered: Experimental and theoretical aspects of advanced materials and devices dealing with synthesis or structural chemistry, physical and electronic properties, photonics, engineering applications, and uniquely pertinent measurement or analytical techniques. Current Applied Physics, published since 2001, covers physics, chemistry and materials science, including bio-materials, with their engineering aspects. It is a truly interdisciplinary journal opening a forum for scientists of all related fields, a unique point of the journal discriminating it from other worldwide and/or Pacific Rim applied physics journals. Regular research papers, letters and review articles with contents meeting the scope of the journal will be considered for publication after peer review. The Journal is owned by the Korean Physical Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信