非均质随机图的渐近粗里奇曲率

Pub Date : 2024-08-12 DOI:10.1016/j.spl.2024.110245
Mingao Yuan
{"title":"非均质随机图的渐近粗里奇曲率","authors":"Mingao Yuan","doi":"10.1016/j.spl.2024.110245","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we study the coarse Ricci curvature of inhomogeneous random graph on vertex set <span><math><mrow><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow><mo>≔</mo><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi><mo>}</mo></mrow></mrow></math></span>. In this graph, each pair of vertices <span><math><mrow><mo>(</mo><mi>i</mi><mo>,</mo><mi>j</mi><mo>)</mo></mrow></math></span> forms an edge independently with probability <span><math><mrow><mfrac><mrow><mi>λ</mi></mrow><mrow><msup><mrow><mi>n</mi></mrow><mrow><mi>α</mi></mrow></msup></mrow></mfrac><mi>g</mi><mfenced><mrow><mfrac><mrow><mi>i</mi></mrow><mrow><mi>n</mi></mrow></mfrac><mo>,</mo><mfrac><mrow><mi>j</mi></mrow><mrow><mi>n</mi></mrow></mfrac></mrow></mfenced></mrow></math></span> for some function <span><math><mrow><mi>g</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></mrow></math></span>, constants <span><math><mrow><mi>λ</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span> and <span><math><mrow><mi>α</mi><mo>∈</mo><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></mrow></math></span>. We derive the asymptotic coarse Ricci curvature of this random graph. Phase transition phenomenon exists as <span><math><mi>α</mi></math></span> varies from zero to one.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotic coarse Ricci curvature of inhomogeneous random graph\",\"authors\":\"Mingao Yuan\",\"doi\":\"10.1016/j.spl.2024.110245\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we study the coarse Ricci curvature of inhomogeneous random graph on vertex set <span><math><mrow><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow><mo>≔</mo><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi><mo>}</mo></mrow></mrow></math></span>. In this graph, each pair of vertices <span><math><mrow><mo>(</mo><mi>i</mi><mo>,</mo><mi>j</mi><mo>)</mo></mrow></math></span> forms an edge independently with probability <span><math><mrow><mfrac><mrow><mi>λ</mi></mrow><mrow><msup><mrow><mi>n</mi></mrow><mrow><mi>α</mi></mrow></msup></mrow></mfrac><mi>g</mi><mfenced><mrow><mfrac><mrow><mi>i</mi></mrow><mrow><mi>n</mi></mrow></mfrac><mo>,</mo><mfrac><mrow><mi>j</mi></mrow><mrow><mi>n</mi></mrow></mfrac></mrow></mfenced></mrow></math></span> for some function <span><math><mrow><mi>g</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></mrow></math></span>, constants <span><math><mrow><mi>λ</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span> and <span><math><mrow><mi>α</mi><mo>∈</mo><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></mrow></math></span>. We derive the asymptotic coarse Ricci curvature of this random graph. Phase transition phenomenon exists as <span><math><mi>α</mi></math></span> varies from zero to one.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167715224002141\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167715224002141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究顶点集 [n]≔{1,2,...n} 上不均匀随机图的粗里奇曲率。在这个图中,每对顶点 (i,j) 都以概率 λnαgin,jn 独立地形成一条边,对于某个函数 g(x,y)∈(0,1],常数 λ>0 和 α∈[0,1]。我们推导出了这种随机图的渐近粗里奇曲率。当 α 从 0 变化到 1 时,存在相变现象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Asymptotic coarse Ricci curvature of inhomogeneous random graph

In this paper, we study the coarse Ricci curvature of inhomogeneous random graph on vertex set [n]{1,2,,n}. In this graph, each pair of vertices (i,j) forms an edge independently with probability λnαgin,jn for some function g(x,y)(0,1], constants λ>0 and α[0,1]. We derive the asymptotic coarse Ricci curvature of this random graph. Phase transition phenomenon exists as α varies from zero to one.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信