掺杂液晶的介孔胆酸盐颗粒作为正常透明的智能窗口

IF 4.8 3区 材料科学 Q1 CHEMISTRY, APPLIED
Niveen Huseen , Zaher M.A. Judeh , Ibrahim Abdulhalim
{"title":"掺杂液晶的介孔胆酸盐颗粒作为正常透明的智能窗口","authors":"Niveen Huseen ,&nbsp;Zaher M.A. Judeh ,&nbsp;Ibrahim Abdulhalim","doi":"10.1016/j.micromeso.2024.113296","DOIUrl":null,"url":null,"abstract":"<div><p>A composite layer of homogeneously aligned liquid crystal (LC) doped with nano or mesoporous microparticles (NMPs) has been shown to act as normally opaque smart window (SW) in what is called NMP-LC mode. The porosity of the particle plays two important roles: (i) When the LC infiltrates the particle, it brings its refractive index to be closer to that of its LC surrounding at a certain orientation of the LC molecules and creates a large index mismatch at the orthogonal orientation; (ii) the LC infiltration brings the porous particle density to be closer to the surrounding LC, thus preventing precipitation and floating. Here we demonstrate that LC doped with cochleate cigar-shaped hollow particles and using DMOAP as an alignment layer acts as a normally transparent smart window. Under voltage, the best scenario that explains the polarization-independent scattering is to have the cochleate particles inclined at an angle to balance the dielectric with the elastic forces effectively. The emergence of the scattering mode results from the symbiotic interplay of two distinct phenomena – the NMP effect and the electro-hydrodynamic instability effect. The synergy between these two effects manifests in lower operating voltage and frequency requirements for the device, hence less energy consumption. The scattering increases between 30 °C and 50 °C, thus it acts as a self-adjustable window giving more shade as the outside temperature rises. The threshold voltage is found to decrease with temperature. The SW exhibits high transparency in the OFF state, and high haze in the ON state, and the durability test shows that the SW switches for at least 6 days without degradation of optical contrast.</p></div>","PeriodicalId":392,"journal":{"name":"Microporous and Mesoporous Materials","volume":"379 ","pages":"Article 113296"},"PeriodicalIF":4.8000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mesoporous chochleate particles doped liquid crystal as normally transparent smart window\",\"authors\":\"Niveen Huseen ,&nbsp;Zaher M.A. Judeh ,&nbsp;Ibrahim Abdulhalim\",\"doi\":\"10.1016/j.micromeso.2024.113296\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A composite layer of homogeneously aligned liquid crystal (LC) doped with nano or mesoporous microparticles (NMPs) has been shown to act as normally opaque smart window (SW) in what is called NMP-LC mode. The porosity of the particle plays two important roles: (i) When the LC infiltrates the particle, it brings its refractive index to be closer to that of its LC surrounding at a certain orientation of the LC molecules and creates a large index mismatch at the orthogonal orientation; (ii) the LC infiltration brings the porous particle density to be closer to the surrounding LC, thus preventing precipitation and floating. Here we demonstrate that LC doped with cochleate cigar-shaped hollow particles and using DMOAP as an alignment layer acts as a normally transparent smart window. Under voltage, the best scenario that explains the polarization-independent scattering is to have the cochleate particles inclined at an angle to balance the dielectric with the elastic forces effectively. The emergence of the scattering mode results from the symbiotic interplay of two distinct phenomena – the NMP effect and the electro-hydrodynamic instability effect. The synergy between these two effects manifests in lower operating voltage and frequency requirements for the device, hence less energy consumption. The scattering increases between 30 °C and 50 °C, thus it acts as a self-adjustable window giving more shade as the outside temperature rises. The threshold voltage is found to decrease with temperature. The SW exhibits high transparency in the OFF state, and high haze in the ON state, and the durability test shows that the SW switches for at least 6 days without degradation of optical contrast.</p></div>\",\"PeriodicalId\":392,\"journal\":{\"name\":\"Microporous and Mesoporous Materials\",\"volume\":\"379 \",\"pages\":\"Article 113296\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microporous and Mesoporous Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1387181124003184\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microporous and Mesoporous Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1387181124003184","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在均匀排列的液晶(LC)复合层中掺入纳米或介孔微粒(NMPs),已被证明可以在所谓的 NMP-LC 模式下作为正常的不透明智能窗口(SW)。微粒的多孔性起着两个重要作用:(i) 当低浓度有机溶剂渗入微粒时,在低浓度有机溶剂分子的某一方向上,微粒的折射率会更接近其周围低浓度有机溶剂的折射率,并在正交方向上产生较大的折射率失配;(ii) 低浓度有机溶剂的渗入会使多孔微粒的密度更接近周围的低浓度有机溶剂,从而防止沉淀和漂浮。在这里,我们证明了掺杂了雪茄形空心颗粒的低密度聚碳酸酯和使用 DMOAP 作为配位层的低密度聚碳酸酯可用作正常透明的智能窗口。在电压作用下,解释与偏振无关的散射的最佳方案是让纤毛颗粒倾斜一定角度,以有效平衡介电力和弹性力。散射模式的出现是 NMP 效应和电流体力学不稳定性效应这两种不同现象相互作用的结果。这两种效应之间的协同作用表现为器件对工作电压和频率的要求更低,因此能耗更少。散射在 30 °C 和 50 °C 之间增加,因此它就像一个可自行调节的窗口,随着外界温度的升高而提供更多的遮蔽。阈值电压随温度升高而降低。这种 SW 在关闭状态下具有高透明度,而在开启状态下则具有高雾度。耐久性测试表明,这种 SW 开关至少可持续 6 天,而光学对比度不会下降。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Mesoporous chochleate particles doped liquid crystal as normally transparent smart window

Mesoporous chochleate particles doped liquid crystal as normally transparent smart window

A composite layer of homogeneously aligned liquid crystal (LC) doped with nano or mesoporous microparticles (NMPs) has been shown to act as normally opaque smart window (SW) in what is called NMP-LC mode. The porosity of the particle plays two important roles: (i) When the LC infiltrates the particle, it brings its refractive index to be closer to that of its LC surrounding at a certain orientation of the LC molecules and creates a large index mismatch at the orthogonal orientation; (ii) the LC infiltration brings the porous particle density to be closer to the surrounding LC, thus preventing precipitation and floating. Here we demonstrate that LC doped with cochleate cigar-shaped hollow particles and using DMOAP as an alignment layer acts as a normally transparent smart window. Under voltage, the best scenario that explains the polarization-independent scattering is to have the cochleate particles inclined at an angle to balance the dielectric with the elastic forces effectively. The emergence of the scattering mode results from the symbiotic interplay of two distinct phenomena – the NMP effect and the electro-hydrodynamic instability effect. The synergy between these two effects manifests in lower operating voltage and frequency requirements for the device, hence less energy consumption. The scattering increases between 30 °C and 50 °C, thus it acts as a self-adjustable window giving more shade as the outside temperature rises. The threshold voltage is found to decrease with temperature. The SW exhibits high transparency in the OFF state, and high haze in the ON state, and the durability test shows that the SW switches for at least 6 days without degradation of optical contrast.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microporous and Mesoporous Materials
Microporous and Mesoporous Materials 化学-材料科学:综合
CiteScore
10.70
自引率
5.80%
发文量
649
审稿时长
26 days
期刊介绍: Microporous and Mesoporous Materials covers novel and significant aspects of porous solids classified as either microporous (pore size up to 2 nm) or mesoporous (pore size 2 to 50 nm). The porosity should have a specific impact on the material properties or application. Typical examples are zeolites and zeolite-like materials, pillared materials, clathrasils and clathrates, carbon molecular sieves, ordered mesoporous materials, organic/inorganic porous hybrid materials, or porous metal oxides. Both natural and synthetic porous materials are within the scope of the journal. Topics which are particularly of interest include: All aspects of natural microporous and mesoporous solids The synthesis of crystalline or amorphous porous materials The physico-chemical characterization of microporous and mesoporous solids, especially spectroscopic and microscopic The modification of microporous and mesoporous solids, for example by ion exchange or solid-state reactions All topics related to diffusion of mobile species in the pores of microporous and mesoporous materials Adsorption (and other separation techniques) using microporous or mesoporous adsorbents Catalysis by microporous and mesoporous materials Host/guest interactions Theoretical chemistry and modelling of host/guest interactions All topics related to the application of microporous and mesoporous materials in industrial catalysis, separation technology, environmental protection, electrochemistry, membranes, sensors, optical devices, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信