{"title":"Nav 和 Cav 信道的通用残差编号方案","authors":"","doi":"10.1016/j.chembiol.2024.07.008","DOIUrl":null,"url":null,"abstract":"<div><p>Voltage-gated sodium (Na<sub>v</sub>) and calcium (Ca<sub>v</sub>) channels are responsible for the initiation of electrical signals. They have long been targeted for the treatment of various diseases. The mounting number of cryoelectron microscopy (cryo-EM) structures for diverse subtypes of Na<sub>v</sub> and Ca<sub>v</sub> channels from multiple organisms necessitates a generic residue numbering system to establish the structure-function relationship and to aid rational drug design or optimization. Here we suggest a structure-based residue numbering scheme, centering around the most conserved residues on each of the functional segments. We elaborate the generic numbers through illustrative examples, focusing on representative drug-binding sites of eukaryotic Na<sub>v</sub> and Ca<sub>v</sub> channels. We also extend the numbering scheme to compare common disease mutations among different Na<sub>v</sub> subtypes. Application of the generic residue numbering scheme affords immediate insights into hotspots for pathogenic mutations and critical loci for drug binding and will facilitate drug discovery targeting Na<sub>v</sub> and Ca<sub>v</sub> channels.</p></div>","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":null,"pages":null},"PeriodicalIF":6.6000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A versatile residue numbering scheme for Nav and Cav channels\",\"authors\":\"\",\"doi\":\"10.1016/j.chembiol.2024.07.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Voltage-gated sodium (Na<sub>v</sub>) and calcium (Ca<sub>v</sub>) channels are responsible for the initiation of electrical signals. They have long been targeted for the treatment of various diseases. The mounting number of cryoelectron microscopy (cryo-EM) structures for diverse subtypes of Na<sub>v</sub> and Ca<sub>v</sub> channels from multiple organisms necessitates a generic residue numbering system to establish the structure-function relationship and to aid rational drug design or optimization. Here we suggest a structure-based residue numbering scheme, centering around the most conserved residues on each of the functional segments. We elaborate the generic numbers through illustrative examples, focusing on representative drug-binding sites of eukaryotic Na<sub>v</sub> and Ca<sub>v</sub> channels. We also extend the numbering scheme to compare common disease mutations among different Na<sub>v</sub> subtypes. Application of the generic residue numbering scheme affords immediate insights into hotspots for pathogenic mutations and critical loci for drug binding and will facilitate drug discovery targeting Na<sub>v</sub> and Ca<sub>v</sub> channels.</p></div>\",\"PeriodicalId\":265,\"journal\":{\"name\":\"Cell Chemical Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2024-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Chemical Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2451945624003106\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Chemical Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451945624003106","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
电压门控钠(Nav)和钙(Cav)通道负责启动电信号。长期以来,它们一直是治疗各种疾病的靶标。来自多种生物体的不同亚型 Nav 和 Cav 通道的冷冻电子显微镜(cryo-EM)结构越来越多,这就需要一个通用的残基编号系统来建立结构-功能关系,并帮助合理的药物设计或优化。在此,我们围绕每个功能片段上最保守的残基,提出了基于结构的残基编号方案。我们以真核生物 Nav 和 Cav 通道的代表性药物结合位点为例,详细阐述了通用编号。我们还扩展了编号方案,以比较不同 Nav 亚型之间的常见疾病突变。应用通用残基编号方案可立即了解致病突变的热点和药物结合的关键位点,并将促进针对 Nav 和 Cav 通道的药物发现。
A versatile residue numbering scheme for Nav and Cav channels
Voltage-gated sodium (Nav) and calcium (Cav) channels are responsible for the initiation of electrical signals. They have long been targeted for the treatment of various diseases. The mounting number of cryoelectron microscopy (cryo-EM) structures for diverse subtypes of Nav and Cav channels from multiple organisms necessitates a generic residue numbering system to establish the structure-function relationship and to aid rational drug design or optimization. Here we suggest a structure-based residue numbering scheme, centering around the most conserved residues on each of the functional segments. We elaborate the generic numbers through illustrative examples, focusing on representative drug-binding sites of eukaryotic Nav and Cav channels. We also extend the numbering scheme to compare common disease mutations among different Nav subtypes. Application of the generic residue numbering scheme affords immediate insights into hotspots for pathogenic mutations and critical loci for drug binding and will facilitate drug discovery targeting Nav and Cav channels.
Cell Chemical BiologyBiochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
14.70
自引率
2.30%
发文量
143
期刊介绍:
Cell Chemical Biology, a Cell Press journal established in 1994 as Chemistry & Biology, focuses on publishing crucial advances in chemical biology research with broad appeal to our diverse community, spanning basic scientists to clinicians. Pioneering investigations at the chemistry-biology interface, the journal fosters collaboration between these disciplines. We encourage submissions providing significant conceptual advancements of broad interest across chemical, biological, clinical, and related fields. Particularly sought are articles utilizing chemical tools to perturb, visualize, and measure biological systems, offering unique insights into molecular mechanisms, disease biology, and therapeutics.