{"title":"分形尺寸和横向相关长度对溅射银层表面等离子体共振活动的影响","authors":"","doi":"10.1016/j.nanoso.2024.101294","DOIUrl":null,"url":null,"abstract":"<div><p>Fractal and optical characteristics of self-affine surfaces of silver(Ag) thin films deposited through direct current (dc) magnetron sputtering as a function of thickness are investigated and explored here. The surface morphology of Ag thin films is characterized by field emission electron microscopy, and atomic force microscopy technique. The cube counting algorithm is used to extract the fractal dimension of Ag thin film. The surface roughness (interface width) shows monotonic increases with film thickness, while the other parameters, such as lateral correlation length, roughness exponent, and fractal dimension exhibit linear variation with thickness. Our findings reveal distinctive scaling behaviors, with scaling exponents α, β, and 1/z indicating unique growth characteristics. The interface width w increases as a power law of thickness t, <span><math><mrow><mi>w</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>∝</mo><msup><mrow><mi>t</mi></mrow><mrow><mi>β</mi></mrow></msup></mrow></math></span>, with β=0.39± 0.007, and the lateral correlation length ξ grows as <span><math><mrow><mi>ξ</mi><mrow><mfenced><mrow><mi>t</mi></mrow></mfenced></mrow><mo>∝</mo><msup><mrow><mi>t</mi></mrow><mrow><mn>1</mn><mo>/</mo><mi>z</mi></mrow></msup></mrow></math></span> with 1/z=0.14± 0.002. The roughness exponent extracted from height-height correlation analysis is α=0.61–0.41. The self-affine nature of the Ag thin films is further confirmed by the autocorrelation function. X-ray photoelectron spectroscopy (XPS) is used to the confirm the growth of Ag thin film. Additionally, we have studied the role of fractal dimensions and lateral correlation length (ξ) on the surface plasmon resonance (SPR) of Ag thin film. Our results indicate a red-shifting behavior of SPR with increasing interface width (w), lateral correlation length (ξ), and fractal dimensions. This study suggests the significance of not only the roughness exponent and fractal dimension but also the local surface slope in SPR activity in Ag thin films.</p></div>","PeriodicalId":397,"journal":{"name":"Nano-Structures & Nano-Objects","volume":null,"pages":null},"PeriodicalIF":5.4500,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of fractal dimension and lateral correlation length on surface plasmon resonance activity in sputtered silver layers\",\"authors\":\"\",\"doi\":\"10.1016/j.nanoso.2024.101294\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Fractal and optical characteristics of self-affine surfaces of silver(Ag) thin films deposited through direct current (dc) magnetron sputtering as a function of thickness are investigated and explored here. The surface morphology of Ag thin films is characterized by field emission electron microscopy, and atomic force microscopy technique. The cube counting algorithm is used to extract the fractal dimension of Ag thin film. The surface roughness (interface width) shows monotonic increases with film thickness, while the other parameters, such as lateral correlation length, roughness exponent, and fractal dimension exhibit linear variation with thickness. Our findings reveal distinctive scaling behaviors, with scaling exponents α, β, and 1/z indicating unique growth characteristics. The interface width w increases as a power law of thickness t, <span><math><mrow><mi>w</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>∝</mo><msup><mrow><mi>t</mi></mrow><mrow><mi>β</mi></mrow></msup></mrow></math></span>, with β=0.39± 0.007, and the lateral correlation length ξ grows as <span><math><mrow><mi>ξ</mi><mrow><mfenced><mrow><mi>t</mi></mrow></mfenced></mrow><mo>∝</mo><msup><mrow><mi>t</mi></mrow><mrow><mn>1</mn><mo>/</mo><mi>z</mi></mrow></msup></mrow></math></span> with 1/z=0.14± 0.002. The roughness exponent extracted from height-height correlation analysis is α=0.61–0.41. The self-affine nature of the Ag thin films is further confirmed by the autocorrelation function. X-ray photoelectron spectroscopy (XPS) is used to the confirm the growth of Ag thin film. Additionally, we have studied the role of fractal dimensions and lateral correlation length (ξ) on the surface plasmon resonance (SPR) of Ag thin film. Our results indicate a red-shifting behavior of SPR with increasing interface width (w), lateral correlation length (ξ), and fractal dimensions. This study suggests the significance of not only the roughness exponent and fractal dimension but also the local surface slope in SPR activity in Ag thin films.</p></div>\",\"PeriodicalId\":397,\"journal\":{\"name\":\"Nano-Structures & Nano-Objects\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4500,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano-Structures & Nano-Objects\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352507X24002051\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Structures & Nano-Objects","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352507X24002051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Impact of fractal dimension and lateral correlation length on surface plasmon resonance activity in sputtered silver layers
Fractal and optical characteristics of self-affine surfaces of silver(Ag) thin films deposited through direct current (dc) magnetron sputtering as a function of thickness are investigated and explored here. The surface morphology of Ag thin films is characterized by field emission electron microscopy, and atomic force microscopy technique. The cube counting algorithm is used to extract the fractal dimension of Ag thin film. The surface roughness (interface width) shows monotonic increases with film thickness, while the other parameters, such as lateral correlation length, roughness exponent, and fractal dimension exhibit linear variation with thickness. Our findings reveal distinctive scaling behaviors, with scaling exponents α, β, and 1/z indicating unique growth characteristics. The interface width w increases as a power law of thickness t, , with β=0.39± 0.007, and the lateral correlation length ξ grows as with 1/z=0.14± 0.002. The roughness exponent extracted from height-height correlation analysis is α=0.61–0.41. The self-affine nature of the Ag thin films is further confirmed by the autocorrelation function. X-ray photoelectron spectroscopy (XPS) is used to the confirm the growth of Ag thin film. Additionally, we have studied the role of fractal dimensions and lateral correlation length (ξ) on the surface plasmon resonance (SPR) of Ag thin film. Our results indicate a red-shifting behavior of SPR with increasing interface width (w), lateral correlation length (ξ), and fractal dimensions. This study suggests the significance of not only the roughness exponent and fractal dimension but also the local surface slope in SPR activity in Ag thin films.
期刊介绍:
Nano-Structures & Nano-Objects is a new journal devoted to all aspects of the synthesis and the properties of this new flourishing domain. The journal is devoted to novel architectures at the nano-level with an emphasis on new synthesis and characterization methods. The journal is focused on the objects rather than on their applications. However, the research for new applications of original nano-structures & nano-objects in various fields such as nano-electronics, energy conversion, catalysis, drug delivery and nano-medicine is also welcome. The scope of Nano-Structures & Nano-Objects involves: -Metal and alloy nanoparticles with complex nanostructures such as shape control, core-shell and dumbells -Oxide nanoparticles and nanostructures, with complex oxide/metal, oxide/surface and oxide /organic interfaces -Inorganic semi-conducting nanoparticles (quantum dots) with an emphasis on new phases, structures, shapes and complexity -Nanostructures involving molecular inorganic species such as nanoparticles of coordination compounds, molecular magnets, spin transition nanoparticles etc. or organic nano-objects, in particular for molecular electronics -Nanostructured materials such as nano-MOFs and nano-zeolites -Hetero-junctions between molecules and nano-objects, between different nano-objects & nanostructures or between nano-objects & nanostructures and surfaces -Methods of characterization specific of the nano size or adapted for the nano size such as X-ray and neutron scattering, light scattering, NMR, Raman, Plasmonics, near field microscopies, various TEM and SEM techniques, magnetic studies, etc .