{"title":"利用无人机视频实时分析信号灯路口的冲突风险:具有均值和方差异质性的随机参数 logit 模型","authors":"Shile Zhang, N.N. Sze","doi":"10.1016/j.aap.2024.107739","DOIUrl":null,"url":null,"abstract":"<div><p>Signalized intersections are crash prone. This can be attributed to driver errors, red light running behaviour, and poor coordination of conflicting traffic. It is anticipated that overall crash risk at signalized intersection would increase when mixed traffic like motorcycles is involved. In this study, a real-time prediction model for motorcycle and non-motorcycle involved conflict risk at the signalized intersection is proposed. For example, high-resolution vehicle and motorcycle trajectory data are extracted from drone videos using advanced computer vision techniques. Additionally, conflict types including rear-end, angle, and head-on conflicts are also considered. Then, the multinomial logit approach is adopted to model the propensity of severe and slight vehicle-vehicle and vehicle-motorcycle conflicts. Furthermore, the problem of unobserved heterogeneity is addressed using the random parameters model with heterogeneity in means and variances. Results indicate that risk of vehicle-vehicle conflict is significantly associated with vehicle speed and acceleration, and conflict type, and that of vehicle-motorcycle conflict is associated with vehicle speed and acceleration, motorcycle lateral speed, conflict type, and time to green signal. Findings should shed light to the development and implementation of optimal traffic signal time plan and traffic management strategy that can mitigate the potential crash risk, especially involving motorcycles, at the signalized intersection.</p></div>","PeriodicalId":6926,"journal":{"name":"Accident; analysis and prevention","volume":"207 ","pages":"Article 107739"},"PeriodicalIF":5.7000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Real-time conflict risk at signalized intersection using drone video: A random parameters logit model with heterogeneity in means and variances\",\"authors\":\"Shile Zhang, N.N. Sze\",\"doi\":\"10.1016/j.aap.2024.107739\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Signalized intersections are crash prone. This can be attributed to driver errors, red light running behaviour, and poor coordination of conflicting traffic. It is anticipated that overall crash risk at signalized intersection would increase when mixed traffic like motorcycles is involved. In this study, a real-time prediction model for motorcycle and non-motorcycle involved conflict risk at the signalized intersection is proposed. For example, high-resolution vehicle and motorcycle trajectory data are extracted from drone videos using advanced computer vision techniques. Additionally, conflict types including rear-end, angle, and head-on conflicts are also considered. Then, the multinomial logit approach is adopted to model the propensity of severe and slight vehicle-vehicle and vehicle-motorcycle conflicts. Furthermore, the problem of unobserved heterogeneity is addressed using the random parameters model with heterogeneity in means and variances. Results indicate that risk of vehicle-vehicle conflict is significantly associated with vehicle speed and acceleration, and conflict type, and that of vehicle-motorcycle conflict is associated with vehicle speed and acceleration, motorcycle lateral speed, conflict type, and time to green signal. Findings should shed light to the development and implementation of optimal traffic signal time plan and traffic management strategy that can mitigate the potential crash risk, especially involving motorcycles, at the signalized intersection.</p></div>\",\"PeriodicalId\":6926,\"journal\":{\"name\":\"Accident; analysis and prevention\",\"volume\":\"207 \",\"pages\":\"Article 107739\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accident; analysis and prevention\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001457524002847\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ERGONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accident; analysis and prevention","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001457524002847","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ERGONOMICS","Score":null,"Total":0}
Real-time conflict risk at signalized intersection using drone video: A random parameters logit model with heterogeneity in means and variances
Signalized intersections are crash prone. This can be attributed to driver errors, red light running behaviour, and poor coordination of conflicting traffic. It is anticipated that overall crash risk at signalized intersection would increase when mixed traffic like motorcycles is involved. In this study, a real-time prediction model for motorcycle and non-motorcycle involved conflict risk at the signalized intersection is proposed. For example, high-resolution vehicle and motorcycle trajectory data are extracted from drone videos using advanced computer vision techniques. Additionally, conflict types including rear-end, angle, and head-on conflicts are also considered. Then, the multinomial logit approach is adopted to model the propensity of severe and slight vehicle-vehicle and vehicle-motorcycle conflicts. Furthermore, the problem of unobserved heterogeneity is addressed using the random parameters model with heterogeneity in means and variances. Results indicate that risk of vehicle-vehicle conflict is significantly associated with vehicle speed and acceleration, and conflict type, and that of vehicle-motorcycle conflict is associated with vehicle speed and acceleration, motorcycle lateral speed, conflict type, and time to green signal. Findings should shed light to the development and implementation of optimal traffic signal time plan and traffic management strategy that can mitigate the potential crash risk, especially involving motorcycles, at the signalized intersection.
期刊介绍:
Accident Analysis & Prevention provides wide coverage of the general areas relating to accidental injury and damage, including the pre-injury and immediate post-injury phases. Published papers deal with medical, legal, economic, educational, behavioral, theoretical or empirical aspects of transportation accidents, as well as with accidents at other sites. Selected topics within the scope of the Journal may include: studies of human, environmental and vehicular factors influencing the occurrence, type and severity of accidents and injury; the design, implementation and evaluation of countermeasures; biomechanics of impact and human tolerance limits to injury; modelling and statistical analysis of accident data; policy, planning and decision-making in safety.