纳米改性混凝土的最新进展:通过加入纳米二氧化硅(nS)和纳米钛(nT)提高耐久性、强度和可持续性

IF 2.2 Q2 ENGINEERING, MULTIDISCIPLINARY
John Olajide Tanimola, Steve Efe
{"title":"纳米改性混凝土的最新进展:通过加入纳米二氧化硅(nS)和纳米钛(nT)提高耐久性、强度和可持续性","authors":"John Olajide Tanimola,&nbsp;Steve Efe","doi":"10.1016/j.apples.2024.100189","DOIUrl":null,"url":null,"abstract":"<div><p>Concrete, essential to global infrastructure, confronts urgent environmental challenges due to its high carbon footprint and resource-intensive production. In response, researchers are exploring nanoparticles, such as nano-silica (nS) and nano-titanium dioxide (nT), to enhance sustainability and performance. This review examines recent advances in their application. Nano-silica, prized for rapid hydration and enhanced strength, emerges as a promising additive. Studies indicate nS accelerates cement hydration, densifies the matrix, and improves durability and impermeability. Silica-based nano-coatings on glass textile-reinforced composites bolster bond strength and resilience. Similarly, nT offers diverse benefits to concrete. Beyond its traditional applications in photocatalysis, nS has been proven to refine pore structure, increase compressive strength, and enhance resistance to elevated temperatures. Additionally, nT adds to the self-cleaning properties of concrete surfaces, making it a promising additive for sustainable construction practices. Despite these advancements, challenges persist in the effective dispersion of nanoparticles within concrete matrices and ensuring their economic feasibility and regulatory compliance. Addressing these challenges will require interdisciplinary collaboration and innovative approaches to optimize dispersion methods, mitigate health risks, and develop robust regulatory frameworks. Future research directions should focus on developing multifunctional nanomaterials capable of imparting multiple desirable properties to concrete simultaneously, such as self-sensing, self-cleaning, and energy harvesting capabilities. Furthermore, efforts to optimize manufacturing processes and scale up production will be essential to realizing the full potential of nano-modified concrete in addressing the sustainability challenges facing the construction industry.</p></div>","PeriodicalId":72251,"journal":{"name":"Applications in engineering science","volume":"19 ","pages":"Article 100189"},"PeriodicalIF":2.2000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666496824000153/pdfft?md5=b1351d571f08a2058867b2cb9775b5ee&pid=1-s2.0-S2666496824000153-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Recent advances in nano-modified concrete: Enhancing durability, strength, and sustainability through nano silica (nS) and nano titanium (nT) incorporation\",\"authors\":\"John Olajide Tanimola,&nbsp;Steve Efe\",\"doi\":\"10.1016/j.apples.2024.100189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Concrete, essential to global infrastructure, confronts urgent environmental challenges due to its high carbon footprint and resource-intensive production. In response, researchers are exploring nanoparticles, such as nano-silica (nS) and nano-titanium dioxide (nT), to enhance sustainability and performance. This review examines recent advances in their application. Nano-silica, prized for rapid hydration and enhanced strength, emerges as a promising additive. Studies indicate nS accelerates cement hydration, densifies the matrix, and improves durability and impermeability. Silica-based nano-coatings on glass textile-reinforced composites bolster bond strength and resilience. Similarly, nT offers diverse benefits to concrete. Beyond its traditional applications in photocatalysis, nS has been proven to refine pore structure, increase compressive strength, and enhance resistance to elevated temperatures. Additionally, nT adds to the self-cleaning properties of concrete surfaces, making it a promising additive for sustainable construction practices. Despite these advancements, challenges persist in the effective dispersion of nanoparticles within concrete matrices and ensuring their economic feasibility and regulatory compliance. Addressing these challenges will require interdisciplinary collaboration and innovative approaches to optimize dispersion methods, mitigate health risks, and develop robust regulatory frameworks. Future research directions should focus on developing multifunctional nanomaterials capable of imparting multiple desirable properties to concrete simultaneously, such as self-sensing, self-cleaning, and energy harvesting capabilities. Furthermore, efforts to optimize manufacturing processes and scale up production will be essential to realizing the full potential of nano-modified concrete in addressing the sustainability challenges facing the construction industry.</p></div>\",\"PeriodicalId\":72251,\"journal\":{\"name\":\"Applications in engineering science\",\"volume\":\"19 \",\"pages\":\"Article 100189\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666496824000153/pdfft?md5=b1351d571f08a2058867b2cb9775b5ee&pid=1-s2.0-S2666496824000153-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applications in engineering science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666496824000153\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applications in engineering science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666496824000153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

混凝土是全球基础设施的重要组成部分,但由于其碳足迹大和生产过程中的资源密集性,它面临着紧迫的环境挑战。为此,研究人员正在探索纳米颗粒,如纳米二氧化硅(nS)和纳米二氧化钛(nT),以提高可持续性和性能。本综述探讨了它们在应用方面的最新进展。纳米二氧化硅因水化速度快、强度高而备受推崇,是一种前景广阔的添加剂。研究表明,纳米二氧化硅可加速水泥水化,使基体致密,并提高耐久性和抗渗性。玻璃纤维增强复合材料上的二氧化硅纳米涂层可增强粘结强度和回弹性。同样,纳米技术也能为混凝土带来多种益处。除了在光催化方面的传统应用外,nS 还被证明可以细化孔隙结构、提高抗压强度和耐高温性能。此外,nT 还能增强混凝土表面的自洁性能,使其成为一种很有前景的可持续建筑添加剂。尽管取得了这些进步,但在混凝土基质中有效分散纳米颗粒以及确保其经济可行性和符合法规方面仍然存在挑战。应对这些挑战需要跨学科合作和创新方法,以优化分散方法、降低健康风险并制定健全的监管框架。未来的研究方向应侧重于开发能够同时赋予混凝土多种理想特性(如自感应、自清洁和能量收集能力)的多功能纳米材料。此外,努力优化制造工艺和扩大生产规模对于充分发挥纳米改性混凝土在应对建筑业面临的可持续发展挑战方面的潜力至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recent advances in nano-modified concrete: Enhancing durability, strength, and sustainability through nano silica (nS) and nano titanium (nT) incorporation

Concrete, essential to global infrastructure, confronts urgent environmental challenges due to its high carbon footprint and resource-intensive production. In response, researchers are exploring nanoparticles, such as nano-silica (nS) and nano-titanium dioxide (nT), to enhance sustainability and performance. This review examines recent advances in their application. Nano-silica, prized for rapid hydration and enhanced strength, emerges as a promising additive. Studies indicate nS accelerates cement hydration, densifies the matrix, and improves durability and impermeability. Silica-based nano-coatings on glass textile-reinforced composites bolster bond strength and resilience. Similarly, nT offers diverse benefits to concrete. Beyond its traditional applications in photocatalysis, nS has been proven to refine pore structure, increase compressive strength, and enhance resistance to elevated temperatures. Additionally, nT adds to the self-cleaning properties of concrete surfaces, making it a promising additive for sustainable construction practices. Despite these advancements, challenges persist in the effective dispersion of nanoparticles within concrete matrices and ensuring their economic feasibility and regulatory compliance. Addressing these challenges will require interdisciplinary collaboration and innovative approaches to optimize dispersion methods, mitigate health risks, and develop robust regulatory frameworks. Future research directions should focus on developing multifunctional nanomaterials capable of imparting multiple desirable properties to concrete simultaneously, such as self-sensing, self-cleaning, and energy harvesting capabilities. Furthermore, efforts to optimize manufacturing processes and scale up production will be essential to realizing the full potential of nano-modified concrete in addressing the sustainability challenges facing the construction industry.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applications in engineering science
Applications in engineering science Mechanical Engineering
CiteScore
3.60
自引率
0.00%
发文量
0
审稿时长
68 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信