用于面部头像重建的语义感知超空间可变形神经辐射场

IF 3.9 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Kaixin Jin, Xiaoling Gu, Zimeng Wang, Zhenzhong Kuang, Zizhao Wu, Min Tan, Jun Yu
{"title":"用于面部头像重建的语义感知超空间可变形神经辐射场","authors":"Kaixin Jin,&nbsp;Xiaoling Gu,&nbsp;Zimeng Wang,&nbsp;Zhenzhong Kuang,&nbsp;Zizhao Wu,&nbsp;Min Tan,&nbsp;Jun Yu","doi":"10.1016/j.patrec.2024.08.004","DOIUrl":null,"url":null,"abstract":"<div><p>High-fidelity facial avatar reconstruction from monocular videos is a prominent research problem in computer graphics and computer vision. Recent advancements in the Neural Radiance Field (NeRF) have demonstrated remarkable proficiency in rendering novel views and garnered attention for its potential in facial avatar reconstruction. However, previous methodologies have overlooked the complex motion dynamics present across the head, torso, and intricate facial features. Additionally, a deficiency exists in a generalized NeRF-based framework for facial avatar reconstruction adaptable to either 3DMM coefficients or audio input. To tackle these challenges, we propose an innovative framework that leverages semantic-aware hyper-space deformable NeRF, facilitating the reconstruction of high-fidelity facial avatars from either 3DMM coefficients or audio features. Our framework effectively addresses both localized facial movements and broader head and torso motions through semantic guidance and a unified hyper-space deformation module. Specifically, we adopt a dynamic weighted ray sampling strategy to allocate varying degrees of attention to distinct semantic regions, enhancing the deformable NeRF framework with semantic guidance to capture fine-grained details across diverse facial regions. Moreover, we introduce a hyper-space deformation module that enables the transformation of observation space coordinates into canonical hyper-space coordinates, allowing for the learning of natural facial deformation and head-torso movements. Extensive experiments validate the superiority of our framework over existing state-of-the-art methods, demonstrating its effectiveness in producing realistic and expressive facial avatars. Our code is available at <span><span>https://github.com/jematy/SAHS-Deformable-Nerf</span><svg><path></path></svg></span>.</p></div>","PeriodicalId":54638,"journal":{"name":"Pattern Recognition Letters","volume":"185 ","pages":"Pages 160-166"},"PeriodicalIF":3.9000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Semantic-aware hyper-space deformable neural radiance fields for facial avatar reconstruction\",\"authors\":\"Kaixin Jin,&nbsp;Xiaoling Gu,&nbsp;Zimeng Wang,&nbsp;Zhenzhong Kuang,&nbsp;Zizhao Wu,&nbsp;Min Tan,&nbsp;Jun Yu\",\"doi\":\"10.1016/j.patrec.2024.08.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>High-fidelity facial avatar reconstruction from monocular videos is a prominent research problem in computer graphics and computer vision. Recent advancements in the Neural Radiance Field (NeRF) have demonstrated remarkable proficiency in rendering novel views and garnered attention for its potential in facial avatar reconstruction. However, previous methodologies have overlooked the complex motion dynamics present across the head, torso, and intricate facial features. Additionally, a deficiency exists in a generalized NeRF-based framework for facial avatar reconstruction adaptable to either 3DMM coefficients or audio input. To tackle these challenges, we propose an innovative framework that leverages semantic-aware hyper-space deformable NeRF, facilitating the reconstruction of high-fidelity facial avatars from either 3DMM coefficients or audio features. Our framework effectively addresses both localized facial movements and broader head and torso motions through semantic guidance and a unified hyper-space deformation module. Specifically, we adopt a dynamic weighted ray sampling strategy to allocate varying degrees of attention to distinct semantic regions, enhancing the deformable NeRF framework with semantic guidance to capture fine-grained details across diverse facial regions. Moreover, we introduce a hyper-space deformation module that enables the transformation of observation space coordinates into canonical hyper-space coordinates, allowing for the learning of natural facial deformation and head-torso movements. Extensive experiments validate the superiority of our framework over existing state-of-the-art methods, demonstrating its effectiveness in producing realistic and expressive facial avatars. Our code is available at <span><span>https://github.com/jematy/SAHS-Deformable-Nerf</span><svg><path></path></svg></span>.</p></div>\",\"PeriodicalId\":54638,\"journal\":{\"name\":\"Pattern Recognition Letters\",\"volume\":\"185 \",\"pages\":\"Pages 160-166\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pattern Recognition Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167865524002368\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167865524002368","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

从单目视频中重建高保真面部头像是计算机图形学和计算机视觉领域的一个突出研究课题。神经辐射场(NeRF)的最新进展表明,该技术在渲染新颖视图方面具有出色的能力,并因其在面部头像重建方面的潜力而备受关注。然而,以前的方法忽略了头部、躯干和复杂面部特征的复杂运动动态。此外,基于 NeRF 的面部头像重建通用框架也存在不足,既不能适应 3DMM 系数,也不能适应音频输入。为了应对这些挑战,我们提出了一个创新框架,利用语义感知超空间可变形 NeRF,促进从 3DMM 系数或音频特征重建高保真面部头像。我们的框架通过语义引导和统一的超空间变形模块,有效地解决了局部面部运动和更广泛的头部和躯干运动问题。具体来说,我们采用动态加权射线采样策略,将不同程度的注意力分配给不同的语义区域,通过语义引导来增强可变形 NeRF 框架,从而捕捉不同面部区域的精细细节。此外,我们还引入了超空间变形模块,可将观察空间坐标转换为规范超空间坐标,从而学习自然的面部变形和头躯干运动。广泛的实验验证了我们的框架优于现有的最先进方法,证明了它在制作逼真且富有表现力的面部化身方面的有效性。我们的代码见 https://github.com/jematy/SAHS-Deformable-Nerf。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Semantic-aware hyper-space deformable neural radiance fields for facial avatar reconstruction

Semantic-aware hyper-space deformable neural radiance fields for facial avatar reconstruction

High-fidelity facial avatar reconstruction from monocular videos is a prominent research problem in computer graphics and computer vision. Recent advancements in the Neural Radiance Field (NeRF) have demonstrated remarkable proficiency in rendering novel views and garnered attention for its potential in facial avatar reconstruction. However, previous methodologies have overlooked the complex motion dynamics present across the head, torso, and intricate facial features. Additionally, a deficiency exists in a generalized NeRF-based framework for facial avatar reconstruction adaptable to either 3DMM coefficients or audio input. To tackle these challenges, we propose an innovative framework that leverages semantic-aware hyper-space deformable NeRF, facilitating the reconstruction of high-fidelity facial avatars from either 3DMM coefficients or audio features. Our framework effectively addresses both localized facial movements and broader head and torso motions through semantic guidance and a unified hyper-space deformation module. Specifically, we adopt a dynamic weighted ray sampling strategy to allocate varying degrees of attention to distinct semantic regions, enhancing the deformable NeRF framework with semantic guidance to capture fine-grained details across diverse facial regions. Moreover, we introduce a hyper-space deformation module that enables the transformation of observation space coordinates into canonical hyper-space coordinates, allowing for the learning of natural facial deformation and head-torso movements. Extensive experiments validate the superiority of our framework over existing state-of-the-art methods, demonstrating its effectiveness in producing realistic and expressive facial avatars. Our code is available at https://github.com/jematy/SAHS-Deformable-Nerf.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pattern Recognition Letters
Pattern Recognition Letters 工程技术-计算机:人工智能
CiteScore
12.40
自引率
5.90%
发文量
287
审稿时长
9.1 months
期刊介绍: Pattern Recognition Letters aims at rapid publication of concise articles of a broad interest in pattern recognition. Subject areas include all the current fields of interest represented by the Technical Committees of the International Association of Pattern Recognition, and other developing themes involving learning and recognition.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信