具有分布式繁殖延迟的离散种群模型的推导和动力学。

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Sabrina H. Streipert , Gail S.K. Wolkowicz
{"title":"具有分布式繁殖延迟的离散种群模型的推导和动力学。","authors":"Sabrina H. Streipert ,&nbsp;Gail S.K. Wolkowicz","doi":"10.1016/j.mbs.2024.109279","DOIUrl":null,"url":null,"abstract":"<div><p>We introduce a class of discrete single species models with distributed delay in the reproductive process and a cohort dependent survival function that accounts for survival pressure during that delay period. These delay recurrences track the mature population for species in which individuals reach maturity after at least <span><math><mi>τ</mi></math></span> and at most <span><math><mrow><mi>τ</mi><mo>+</mo><msub><mrow><mi>τ</mi></mrow><mrow><mi>M</mi></mrow></msub></mrow></math></span> breeding cycles. Under realistic model assumptions, we prove the existence of a critical delay threshold, <span><math><msub><mrow><mover><mrow><mi>τ</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mi>c</mi></mrow></msub></math></span>. For given delay kernel length <span><math><msub><mrow><mi>τ</mi></mrow><mrow><mi>M</mi></mrow></msub></math></span>, if each individual takes at least <span><math><msub><mrow><mover><mrow><mi>τ</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mi>c</mi></mrow></msub></math></span> time units to reach maturity, then the population is predicted to go extinct. We show that the positive equilibrium is decreasing in both <span><math><mi>τ</mi></math></span> and <span><math><msub><mrow><mi>τ</mi></mrow><mrow><mi>M</mi></mrow></msub></math></span>. In the case of a constant reproductive rate, we provide an equation to determine <span><math><msub><mrow><mover><mrow><mi>τ</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mi>c</mi></mrow></msub></math></span> for fixed <span><math><msub><mrow><mi>τ</mi></mrow><mrow><mi>M</mi></mrow></msub></math></span>, and similarly, provide a lower bound on the kernel length, <span><math><msub><mrow><mover><mrow><mi>τ</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mi>M</mi></mrow></msub></math></span> for fixed <span><math><mi>τ</mi></math></span> such that the population goes extinct if <span><math><mrow><msub><mrow><mi>τ</mi></mrow><mrow><mi>M</mi></mrow></msub><mo>≥</mo><msub><mrow><mover><mrow><mi>τ</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mi>M</mi></mrow></msub></mrow></math></span>. We compare these critical thresholds for different maturation distributions and show that if all else is the same, to avoid extinction it is best if all individuals in the population have the shortest delay possible. We apply the model derivation to a Beverton–Holt model and discuss its global dynamics. For this model with kernels that share the same mean delay, we show that populations with the largest variance in the time required to reach maturity have higher population levels and lower chances of extinction.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Derivation and dynamics of discrete population models with distributed delay in reproduction\",\"authors\":\"Sabrina H. Streipert ,&nbsp;Gail S.K. Wolkowicz\",\"doi\":\"10.1016/j.mbs.2024.109279\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We introduce a class of discrete single species models with distributed delay in the reproductive process and a cohort dependent survival function that accounts for survival pressure during that delay period. These delay recurrences track the mature population for species in which individuals reach maturity after at least <span><math><mi>τ</mi></math></span> and at most <span><math><mrow><mi>τ</mi><mo>+</mo><msub><mrow><mi>τ</mi></mrow><mrow><mi>M</mi></mrow></msub></mrow></math></span> breeding cycles. Under realistic model assumptions, we prove the existence of a critical delay threshold, <span><math><msub><mrow><mover><mrow><mi>τ</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mi>c</mi></mrow></msub></math></span>. For given delay kernel length <span><math><msub><mrow><mi>τ</mi></mrow><mrow><mi>M</mi></mrow></msub></math></span>, if each individual takes at least <span><math><msub><mrow><mover><mrow><mi>τ</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mi>c</mi></mrow></msub></math></span> time units to reach maturity, then the population is predicted to go extinct. We show that the positive equilibrium is decreasing in both <span><math><mi>τ</mi></math></span> and <span><math><msub><mrow><mi>τ</mi></mrow><mrow><mi>M</mi></mrow></msub></math></span>. In the case of a constant reproductive rate, we provide an equation to determine <span><math><msub><mrow><mover><mrow><mi>τ</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mi>c</mi></mrow></msub></math></span> for fixed <span><math><msub><mrow><mi>τ</mi></mrow><mrow><mi>M</mi></mrow></msub></math></span>, and similarly, provide a lower bound on the kernel length, <span><math><msub><mrow><mover><mrow><mi>τ</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mi>M</mi></mrow></msub></math></span> for fixed <span><math><mi>τ</mi></math></span> such that the population goes extinct if <span><math><mrow><msub><mrow><mi>τ</mi></mrow><mrow><mi>M</mi></mrow></msub><mo>≥</mo><msub><mrow><mover><mrow><mi>τ</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mi>M</mi></mrow></msub></mrow></math></span>. We compare these critical thresholds for different maturation distributions and show that if all else is the same, to avoid extinction it is best if all individuals in the population have the shortest delay possible. We apply the model derivation to a Beverton–Holt model and discuss its global dynamics. For this model with kernels that share the same mean delay, we show that populations with the largest variance in the time required to reach maturity have higher population levels and lower chances of extinction.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0025556424001391\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025556424001391","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们引入了一类离散的单一物种模型,该模型在繁殖过程中具有分布式延迟,并具有与群落相关的生存函数,该函数考虑了延迟期间的生存压力。对于个体至少经过 τ 个繁殖周期、最多经过 τ+τM 个繁殖周期才达到成熟的物种,这些延迟复现会跟踪其成熟种群。在现实的模型假设下,我们证明了临界延迟阈值τ˜c的存在。对于给定的延迟核长度τM,如果每个个体至少需要τ˜c个时间单位才能达到成熟,那么预测种群将灭绝。我们证明,正平衡在 τ 和 τM 中都是递减的。在繁殖率恒定的情况下,我们提供了一个方程来确定固定τM 时的τ˜c,同样,我们也提供了固定τ 时内核长度τ˜M 的下限,这样,如果τM≥τ˜M,种群就会灭绝。我们对不同成熟度分布的临界阈值进行了比较,结果表明,如果其他条件相同,要避免种群灭绝,种群中所有个体的延迟时间最好尽可能短。我们将模型推导应用于贝弗顿-霍尔特模型,并讨论其全局动态。对于这个具有相同平均延迟的核模型,我们表明,达到成熟所需时间方差最大的种群具有较高的种群水平和较低的灭绝几率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Derivation and dynamics of discrete population models with distributed delay in reproduction

We introduce a class of discrete single species models with distributed delay in the reproductive process and a cohort dependent survival function that accounts for survival pressure during that delay period. These delay recurrences track the mature population for species in which individuals reach maturity after at least τ and at most τ+τM breeding cycles. Under realistic model assumptions, we prove the existence of a critical delay threshold, τ˜c. For given delay kernel length τM, if each individual takes at least τ˜c time units to reach maturity, then the population is predicted to go extinct. We show that the positive equilibrium is decreasing in both τ and τM. In the case of a constant reproductive rate, we provide an equation to determine τ˜c for fixed τM, and similarly, provide a lower bound on the kernel length, τ˜M for fixed τ such that the population goes extinct if τMτ˜M. We compare these critical thresholds for different maturation distributions and show that if all else is the same, to avoid extinction it is best if all individuals in the population have the shortest delay possible. We apply the model derivation to a Beverton–Holt model and discuss its global dynamics. For this model with kernels that share the same mean delay, we show that populations with the largest variance in the time required to reach maturity have higher population levels and lower chances of extinction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信