Bo Li, Lingling Zhang, Jun Liu, Hong Peng, Qianying Wang, Jiaqi Liu
{"title":"采用参数自适应双通道动态阈值神经 P 系统的多焦点图像融合。","authors":"Bo Li, Lingling Zhang, Jun Liu, Hong Peng, Qianying Wang, Jiaqi Liu","doi":"10.1016/j.neunet.2024.106603","DOIUrl":null,"url":null,"abstract":"<p><p>Multi-focus image fusion (MFIF) is an important technique that aims to combine the focused regions of multiple source images into a fully clear image. Decision-map methods are widely used in MFIF to maximize the preservation of information from the source images. While many decision-map methods have been proposed, they often struggle with difficulties in determining focus and non-focus boundaries, further affecting the quality of the fused images. Dynamic threshold neural P (DTNP) systems are computational models inspired by biological spiking neurons, featuring dynamic threshold and spiking mechanisms to better distinguish focused and unfocused regions for decision map generation. However, original DTNP systems require manual parameter configuration and have only one stimulus. Therefore, they are not suitable to be used directly for generating high-precision decision maps. To overcome these limitations, we propose a variant called parameter adaptive dual channel DTNP (PADCDTNP) systems. Inspired by the spiking mechanisms of PADCDTNP systems, we further develop a new MFIF method. As a new neural model, PADCDTNP systems adaptively estimate parameters according to multiple external inputs to produce decision maps with robust boundaries, resulting in high-quality fusion results. Comprehensive experiments on the Lytro/MFFW/MFI-WHU dataset show that our method achieves advanced performance and yields comparable results to the fourteen representative MFIF methods. In addition, compared to the standard DTNP systems, PADCDTNP systems improve the fusion performance and fusion efficiency on the three datasets by 5.69% and 86.03%, respectively. The codes for both the proposed method and the comparison methods are released at https://github.com/MorvanLi/MFIF-PADCDTNP.</p>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"179 ","pages":"106603"},"PeriodicalIF":6.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-focus image fusion with parameter adaptive dual channel dynamic threshold neural P systems.\",\"authors\":\"Bo Li, Lingling Zhang, Jun Liu, Hong Peng, Qianying Wang, Jiaqi Liu\",\"doi\":\"10.1016/j.neunet.2024.106603\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Multi-focus image fusion (MFIF) is an important technique that aims to combine the focused regions of multiple source images into a fully clear image. Decision-map methods are widely used in MFIF to maximize the preservation of information from the source images. While many decision-map methods have been proposed, they often struggle with difficulties in determining focus and non-focus boundaries, further affecting the quality of the fused images. Dynamic threshold neural P (DTNP) systems are computational models inspired by biological spiking neurons, featuring dynamic threshold and spiking mechanisms to better distinguish focused and unfocused regions for decision map generation. However, original DTNP systems require manual parameter configuration and have only one stimulus. Therefore, they are not suitable to be used directly for generating high-precision decision maps. To overcome these limitations, we propose a variant called parameter adaptive dual channel DTNP (PADCDTNP) systems. Inspired by the spiking mechanisms of PADCDTNP systems, we further develop a new MFIF method. As a new neural model, PADCDTNP systems adaptively estimate parameters according to multiple external inputs to produce decision maps with robust boundaries, resulting in high-quality fusion results. Comprehensive experiments on the Lytro/MFFW/MFI-WHU dataset show that our method achieves advanced performance and yields comparable results to the fourteen representative MFIF methods. In addition, compared to the standard DTNP systems, PADCDTNP systems improve the fusion performance and fusion efficiency on the three datasets by 5.69% and 86.03%, respectively. The codes for both the proposed method and the comparison methods are released at https://github.com/MorvanLi/MFIF-PADCDTNP.</p>\",\"PeriodicalId\":49763,\"journal\":{\"name\":\"Neural Networks\",\"volume\":\"179 \",\"pages\":\"106603\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1016/j.neunet.2024.106603\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1016/j.neunet.2024.106603","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/8 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Multi-focus image fusion with parameter adaptive dual channel dynamic threshold neural P systems.
Multi-focus image fusion (MFIF) is an important technique that aims to combine the focused regions of multiple source images into a fully clear image. Decision-map methods are widely used in MFIF to maximize the preservation of information from the source images. While many decision-map methods have been proposed, they often struggle with difficulties in determining focus and non-focus boundaries, further affecting the quality of the fused images. Dynamic threshold neural P (DTNP) systems are computational models inspired by biological spiking neurons, featuring dynamic threshold and spiking mechanisms to better distinguish focused and unfocused regions for decision map generation. However, original DTNP systems require manual parameter configuration and have only one stimulus. Therefore, they are not suitable to be used directly for generating high-precision decision maps. To overcome these limitations, we propose a variant called parameter adaptive dual channel DTNP (PADCDTNP) systems. Inspired by the spiking mechanisms of PADCDTNP systems, we further develop a new MFIF method. As a new neural model, PADCDTNP systems adaptively estimate parameters according to multiple external inputs to produce decision maps with robust boundaries, resulting in high-quality fusion results. Comprehensive experiments on the Lytro/MFFW/MFI-WHU dataset show that our method achieves advanced performance and yields comparable results to the fourteen representative MFIF methods. In addition, compared to the standard DTNP systems, PADCDTNP systems improve the fusion performance and fusion efficiency on the three datasets by 5.69% and 86.03%, respectively. The codes for both the proposed method and the comparison methods are released at https://github.com/MorvanLi/MFIF-PADCDTNP.
期刊介绍:
Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.