{"title":"RACK1 连接 phyB 和 BES1,协调黄铜类固醇依赖性根分生组织的发育。","authors":"Wei Zhu, Yajuan Fu, Hua Zhou, Yeling Zhou, Dayan Zhang, Yuzhu Wang, Yujing Su, Zhiyong Li, Jiansheng Liang","doi":"10.1111/nph.20055","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>\n \n </p><ul>\n \n \n <li>Light and brassinosteroids (BR) are indispensable for plant growth and control cell division in the apical meristem. However, how external light signals cooperate with internal brassinosteroids to program root meristem development remains elusive.</li>\n \n \n <li>We reveal that the photoreceptor phytochrome B (phyB) guides the scaffold protein RACK1 to coordinate BR signaling for maintaining root meristematic activity. phyB and RACK1 promote early root meristem development.</li>\n \n \n <li>Mechanistically, RACK1 could reinforce the phyB–SPA1 association by interacting with both phyB and SPA1, which indirectly affects COP1-dependent RACK1 degradation, resulting in the accumulation of RACK1 in roots. Subsequently, RACK1 interacts with BES1 to repress its DNA-binding activity toward the target gene <i>CYCD3;1</i>, leading to the release of BES1-mediated inhibition of <i>CYCD3;1</i> transcription, and hence the promotion of root meristem development.</li>\n \n \n <li>Our study provides mechanistic insights into the regulation of root meristem development by combination of light and phytohormones signals through the photoreceptors and scaffold proteins.</li>\n </ul>\n \n </div>","PeriodicalId":214,"journal":{"name":"New Phytologist","volume":"244 3","pages":"883-899"},"PeriodicalIF":8.3000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RACK1 links phyB and BES1 to coordinate brassinosteroid-dependent root meristem development\",\"authors\":\"Wei Zhu, Yajuan Fu, Hua Zhou, Yeling Zhou, Dayan Zhang, Yuzhu Wang, Yujing Su, Zhiyong Li, Jiansheng Liang\",\"doi\":\"10.1111/nph.20055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>\\n \\n </p><ul>\\n \\n \\n <li>Light and brassinosteroids (BR) are indispensable for plant growth and control cell division in the apical meristem. However, how external light signals cooperate with internal brassinosteroids to program root meristem development remains elusive.</li>\\n \\n \\n <li>We reveal that the photoreceptor phytochrome B (phyB) guides the scaffold protein RACK1 to coordinate BR signaling for maintaining root meristematic activity. phyB and RACK1 promote early root meristem development.</li>\\n \\n \\n <li>Mechanistically, RACK1 could reinforce the phyB–SPA1 association by interacting with both phyB and SPA1, which indirectly affects COP1-dependent RACK1 degradation, resulting in the accumulation of RACK1 in roots. Subsequently, RACK1 interacts with BES1 to repress its DNA-binding activity toward the target gene <i>CYCD3;1</i>, leading to the release of BES1-mediated inhibition of <i>CYCD3;1</i> transcription, and hence the promotion of root meristem development.</li>\\n \\n \\n <li>Our study provides mechanistic insights into the regulation of root meristem development by combination of light and phytohormones signals through the photoreceptors and scaffold proteins.</li>\\n </ul>\\n \\n </div>\",\"PeriodicalId\":214,\"journal\":{\"name\":\"New Phytologist\",\"volume\":\"244 3\",\"pages\":\"883-899\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Phytologist\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/nph.20055\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Phytologist","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/nph.20055","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
RACK1 links phyB and BES1 to coordinate brassinosteroid-dependent root meristem development
Light and brassinosteroids (BR) are indispensable for plant growth and control cell division in the apical meristem. However, how external light signals cooperate with internal brassinosteroids to program root meristem development remains elusive.
We reveal that the photoreceptor phytochrome B (phyB) guides the scaffold protein RACK1 to coordinate BR signaling for maintaining root meristematic activity. phyB and RACK1 promote early root meristem development.
Mechanistically, RACK1 could reinforce the phyB–SPA1 association by interacting with both phyB and SPA1, which indirectly affects COP1-dependent RACK1 degradation, resulting in the accumulation of RACK1 in roots. Subsequently, RACK1 interacts with BES1 to repress its DNA-binding activity toward the target gene CYCD3;1, leading to the release of BES1-mediated inhibition of CYCD3;1 transcription, and hence the promotion of root meristem development.
Our study provides mechanistic insights into the regulation of root meristem development by combination of light and phytohormones signals through the photoreceptors and scaffold proteins.
期刊介绍:
New Phytologist is an international electronic journal published 24 times a year. It is owned by the New Phytologist Foundation, a non-profit-making charitable organization dedicated to promoting plant science. The journal publishes excellent, novel, rigorous, and timely research and scholarship in plant science and its applications. The articles cover topics in five sections: Physiology & Development, Environment, Interaction, Evolution, and Transformative Plant Biotechnology. These sections encompass intracellular processes, global environmental change, and encourage cross-disciplinary approaches. The journal recognizes the use of techniques from molecular and cell biology, functional genomics, modeling, and system-based approaches in plant science. Abstracting and Indexing Information for New Phytologist includes Academic Search, AgBiotech News & Information, Agroforestry Abstracts, Biochemistry & Biophysics Citation Index, Botanical Pesticides, CAB Abstracts®, Environment Index, Global Health, and Plant Breeding Abstracts, and others.