不同 COVID-19 疫苗接种方案的不良反应和抗体应答比较

IF 1.5 4区 医学 Q4 IMMUNOLOGY
Viral immunology Pub Date : 2024-09-01 Epub Date: 2024-08-16 DOI:10.1089/vim.2024.0019
Ana Carolina M Dinelly Pinto, Maria Francilene S Silva, Fátima de Cássia E de Oliveira, Max Moreira L Garcia, Vitória Braga Melo, Gabriela Alexandria Damasceno, Tamires Cardoso Matsui, Marcela H Gambim Fonseca
{"title":"不同 COVID-19 疫苗接种方案的不良反应和抗体应答比较","authors":"Ana Carolina M Dinelly Pinto, Maria Francilene S Silva, Fátima de Cássia E de Oliveira, Max Moreira L Garcia, Vitória Braga Melo, Gabriela Alexandria Damasceno, Tamires Cardoso Matsui, Marcela H Gambim Fonseca","doi":"10.1089/vim.2024.0019","DOIUrl":null,"url":null,"abstract":"<p><p>Global investment in developing COVID-19 vaccines has been substantial, but vaccine hesitancy has emerged due to misinformation. Concerns about adverse events, vaccine shortages, dosing confusion, mixing vaccines, and access issues contribute to hesitancy. Initially, the WHO recommended homologous vaccination (same vaccine for both doses), but evolving factors led to consideration of heterologous vaccination (different vaccines). The study compared reactogenicity and antibody response for both viral protein spike (S) and nucleocapsid (N) in 205 participants who received three vaccination regimens: same vaccine for all doses (Pfizer), two initial doses of the same vaccine (CoronaVac or AstraZeneca), and a Pfizer booster. ChAdOx1 and BNT162b2 vaccines were the most reactogenic vaccines, while CoronaVac vaccine was the least. ChAdOx1 and BNT162b2 achieved 100% of S-IgG seropositivity with one dose, while CoronaVac required two doses, emphasizing the importance of the second dose in achieving complete immunization across the population with different vaccine regimes. Pfizer recipients showed the highest S-IgG antibody titers, followed by AstraZeneca recipients, both after the first and second doses. A third vaccine dose was essential to boost the S-IgG antibodies and equalize the antibody levels among the different vaccine schedules. CoronaVac induced N-IgG antibodies, while in the Pfizer and AstraZeneca groups, they were induced by a natural infection, reinforcing the role of N protein as a biomarker of infection.</p>","PeriodicalId":23665,"journal":{"name":"Viral immunology","volume":" ","pages":"337-345"},"PeriodicalIF":1.5000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison of Adverse Events and Antibody Responses Among Different COVID-19 Vaccination Schedules.\",\"authors\":\"Ana Carolina M Dinelly Pinto, Maria Francilene S Silva, Fátima de Cássia E de Oliveira, Max Moreira L Garcia, Vitória Braga Melo, Gabriela Alexandria Damasceno, Tamires Cardoso Matsui, Marcela H Gambim Fonseca\",\"doi\":\"10.1089/vim.2024.0019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Global investment in developing COVID-19 vaccines has been substantial, but vaccine hesitancy has emerged due to misinformation. Concerns about adverse events, vaccine shortages, dosing confusion, mixing vaccines, and access issues contribute to hesitancy. Initially, the WHO recommended homologous vaccination (same vaccine for both doses), but evolving factors led to consideration of heterologous vaccination (different vaccines). The study compared reactogenicity and antibody response for both viral protein spike (S) and nucleocapsid (N) in 205 participants who received three vaccination regimens: same vaccine for all doses (Pfizer), two initial doses of the same vaccine (CoronaVac or AstraZeneca), and a Pfizer booster. ChAdOx1 and BNT162b2 vaccines were the most reactogenic vaccines, while CoronaVac vaccine was the least. ChAdOx1 and BNT162b2 achieved 100% of S-IgG seropositivity with one dose, while CoronaVac required two doses, emphasizing the importance of the second dose in achieving complete immunization across the population with different vaccine regimes. Pfizer recipients showed the highest S-IgG antibody titers, followed by AstraZeneca recipients, both after the first and second doses. A third vaccine dose was essential to boost the S-IgG antibodies and equalize the antibody levels among the different vaccine schedules. CoronaVac induced N-IgG antibodies, while in the Pfizer and AstraZeneca groups, they were induced by a natural infection, reinforcing the role of N protein as a biomarker of infection.</p>\",\"PeriodicalId\":23665,\"journal\":{\"name\":\"Viral immunology\",\"volume\":\" \",\"pages\":\"337-345\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Viral immunology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/vim.2024.0019\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Viral immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/vim.2024.0019","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/16 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

全球在开发 COVID-19 疫苗方面投入了大量资金,但由于信息错误,人们对疫苗犹豫不决。对不良事件、疫苗短缺、剂量混乱、疫苗混合和接种问题的担忧也是导致犹豫不决的原因。最初,世卫组织推荐同种疫苗接种(两剂疫苗相同),但不断变化的因素导致考虑异种疫苗接种(不同疫苗)。该研究比较了 205 名接种三种疫苗方案的参与者对病毒蛋白穗(S)和核头状体(N)的反应性和抗体反应:所有剂量接种相同疫苗(辉瑞)、初始接种两剂相同疫苗(CoronaVac 或阿斯利康)和辉瑞加强剂。ChAdOx1 和 BNT162b2 疫苗的致反应性最高,而 CoronaVac 疫苗的致反应性最低。ChAdOx1 和 BNT162b2 只需接种一剂就能达到 100% 的 S-IgG 血清阳性反应,而 CoronaVac 则需要接种两剂,这强调了第二剂疫苗在不同疫苗接种方案的人群中实现完全免疫的重要性。辉瑞受试者的 S-IgG 抗体滴度最高,其次是阿斯利康受试者,均在接种第一剂和第二剂后出现。第三剂疫苗对增强 S-IgG 抗体和平衡不同疫苗方案的抗体水平至关重要。CoronaVac可诱导N-IgG抗体,而辉瑞和阿斯利康组则是通过自然感染诱导N-IgG抗体,这加强了N蛋白作为感染生物标志物的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparison of Adverse Events and Antibody Responses Among Different COVID-19 Vaccination Schedules.

Global investment in developing COVID-19 vaccines has been substantial, but vaccine hesitancy has emerged due to misinformation. Concerns about adverse events, vaccine shortages, dosing confusion, mixing vaccines, and access issues contribute to hesitancy. Initially, the WHO recommended homologous vaccination (same vaccine for both doses), but evolving factors led to consideration of heterologous vaccination (different vaccines). The study compared reactogenicity and antibody response for both viral protein spike (S) and nucleocapsid (N) in 205 participants who received three vaccination regimens: same vaccine for all doses (Pfizer), two initial doses of the same vaccine (CoronaVac or AstraZeneca), and a Pfizer booster. ChAdOx1 and BNT162b2 vaccines were the most reactogenic vaccines, while CoronaVac vaccine was the least. ChAdOx1 and BNT162b2 achieved 100% of S-IgG seropositivity with one dose, while CoronaVac required two doses, emphasizing the importance of the second dose in achieving complete immunization across the population with different vaccine regimes. Pfizer recipients showed the highest S-IgG antibody titers, followed by AstraZeneca recipients, both after the first and second doses. A third vaccine dose was essential to boost the S-IgG antibodies and equalize the antibody levels among the different vaccine schedules. CoronaVac induced N-IgG antibodies, while in the Pfizer and AstraZeneca groups, they were induced by a natural infection, reinforcing the role of N protein as a biomarker of infection.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Viral immunology
Viral immunology 医学-病毒学
CiteScore
3.60
自引率
0.00%
发文量
84
审稿时长
6-12 weeks
期刊介绍: Viral Immunology delivers cutting-edge peer-reviewed research on rare, emerging, and under-studied viruses, with special focus on analyzing mutual relationships between external viruses and internal immunity. Original research, reviews, and commentaries on relevant viruses are presented in clinical, translational, and basic science articles for researchers in multiple disciplines. Viral Immunology coverage includes: Human and animal viral immunology Research and development of viral vaccines, including field trials Immunological characterization of viral components Virus-based immunological diseases, including autoimmune syndromes Pathogenic mechanisms Viral diagnostics Tumor and cancer immunology with virus as the primary factor Viral immunology methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信