用于储层计算的磁涡旋动力学微磁分析。

IF 2.3 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER
Ruoyan Feng, John Rex Mohan, Chisato Yamanaka, Yosuke Hasunaka, Arun Jacob Mathew, Yasuhiro Fukuma
{"title":"用于储层计算的磁涡旋动力学微磁分析。","authors":"Ruoyan Feng, John Rex Mohan, Chisato Yamanaka, Yosuke Hasunaka, Arun Jacob Mathew, Yasuhiro Fukuma","doi":"10.1088/1361-648X/ad7006","DOIUrl":null,"url":null,"abstract":"<p><p>Reservoir computing (RC) has generated significant interest for its ability to reduce computational costs compared to traditional neural networks. The performance of the RC element is quantified by its memory capacity (MC) and prediction capability. In this study, we utilize micromagnetic simulations to investigate a magnetic vortex based on a permalloy ferromagnetic layer and its dynamics in RC. The nonlinear dynamics of the vortex core (VC), driven by continuous oscillating magnetic fields and binary digit data as spin-polarized current pulses, are analyzed. The highest MC observed is 4.1, corresponding to the nonlinear VC dynamics. Additionally, the prediction capability is evaluated using the Nonlinear Auto-Regressive Moving Average 2 task, demonstrating a normalized mean squared error of 0.0241 highlighting the time-series data prediction performance of the vortex as a reservoir.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Micromagnetic analysis of magnetic vortex dynamics for reservoir computing.\",\"authors\":\"Ruoyan Feng, John Rex Mohan, Chisato Yamanaka, Yosuke Hasunaka, Arun Jacob Mathew, Yasuhiro Fukuma\",\"doi\":\"10.1088/1361-648X/ad7006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Reservoir computing (RC) has generated significant interest for its ability to reduce computational costs compared to traditional neural networks. The performance of the RC element is quantified by its memory capacity (MC) and prediction capability. In this study, we utilize micromagnetic simulations to investigate a magnetic vortex based on a permalloy ferromagnetic layer and its dynamics in RC. The nonlinear dynamics of the vortex core (VC), driven by continuous oscillating magnetic fields and binary digit data as spin-polarized current pulses, are analyzed. The highest MC observed is 4.1, corresponding to the nonlinear VC dynamics. Additionally, the prediction capability is evaluated using the Nonlinear Auto-Regressive Moving Average 2 task, demonstrating a normalized mean squared error of 0.0241 highlighting the time-series data prediction performance of the vortex as a reservoir.</p>\",\"PeriodicalId\":16776,\"journal\":{\"name\":\"Journal of Physics: Condensed Matter\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics: Condensed Matter\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-648X/ad7006\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-648X/ad7006","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

与传统的神经网络相比,水库计算能够降低计算成本,因此备受关注。储层计算元件的性能由其内存容量和预测能力来量化。在本研究中,我们利用微磁模拟研究了基于过合金铁磁层的磁涡旋及其在储层计算中的动力学。在连续振荡磁场和作为自旋极化电流脉冲的二进制数字数据的驱动下,对涡旋核心的非线性动力学进行了分析。观察到的最高内存容量为 4.1,与极性切换的振荡动态涡旋核心相对应。此外,还使用非线性自回归移动平均(NARMA2)任务对预测能力进行了评估,结果显示归一化均方误差为 0.0241,凸显了涡旋作为储存器的时间序列数据处理性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Micromagnetic analysis of magnetic vortex dynamics for reservoir computing.

Reservoir computing (RC) has generated significant interest for its ability to reduce computational costs compared to traditional neural networks. The performance of the RC element is quantified by its memory capacity (MC) and prediction capability. In this study, we utilize micromagnetic simulations to investigate a magnetic vortex based on a permalloy ferromagnetic layer and its dynamics in RC. The nonlinear dynamics of the vortex core (VC), driven by continuous oscillating magnetic fields and binary digit data as spin-polarized current pulses, are analyzed. The highest MC observed is 4.1, corresponding to the nonlinear VC dynamics. Additionally, the prediction capability is evaluated using the Nonlinear Auto-Regressive Moving Average 2 task, demonstrating a normalized mean squared error of 0.0241 highlighting the time-series data prediction performance of the vortex as a reservoir.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Physics: Condensed Matter
Journal of Physics: Condensed Matter 物理-物理:凝聚态物理
CiteScore
5.30
自引率
7.40%
发文量
1288
审稿时长
2.1 months
期刊介绍: Journal of Physics: Condensed Matter covers the whole of condensed matter physics including soft condensed matter and nanostructures. Papers may report experimental, theoretical and simulation studies. Note that papers must contain fundamental condensed matter science: papers reporting methods of materials preparation or properties of materials without novel condensed matter content will not be accepted.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信