蚕核多面体逆转录病毒 LEF-2 通过触发宿主细胞 DNA 损伤反应,在 G2/M 阶段破坏细胞周期。

IF 2.3 2区 农林科学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Jie Wang, Miao Xiao, Zhigang Hu, Yu Lin, Kejie Li, Peng Chen, Cheng Lu, Zhanqi Dong, Minhui Pan
{"title":"蚕核多面体逆转录病毒 LEF-2 通过触发宿主细胞 DNA 损伤反应,在 G2/M 阶段破坏细胞周期。","authors":"Jie Wang, Miao Xiao, Zhigang Hu, Yu Lin, Kejie Li, Peng Chen, Cheng Lu, Zhanqi Dong, Minhui Pan","doi":"10.1111/imb.12951","DOIUrl":null,"url":null,"abstract":"<p><p>It is a common strategy for viruses to block the host cell cycle to favour their DNA replication. Baculovirus, being a double-stranded DNA virus, can arrest the cell cycle in the G2/M phase to facilitate its replication. However, the key viral genes and mechanisms crucial for inducing cell cycle arrest remain poorly understood. Here, we initially examined the impacts of several Bombyx mori nucleopolyhedrovirus (BmNPV) DNA replication-associated genes: ie1, lef-1, lef-2, lef-3, lef-4, odv-ec27 and dbp. We assessed their effects on both the host cells' DNA replication and cell cycle. Our findings reveal that when the lef-2 gene was overexpressed, it led to a significant increase in the number of cells in the G2/M phase and a reduction in the number of cells in the S phase. Furthermore, we discovered that the LEF-2 protein is located in the virogenic stroma and confirmed its involvement in viral DNA replication. Additionally, by employing interference and overexpression experiments, we found that LEF-2 influences host cell DNA replication and blocks the cell cycle in the G2/M phase by regulating the expression of CyclinB and CDK1. Finally, we found that BmNPV lef-2 triggered a DNA damage response in the host cell, and inhibiting this response removed the cell cycle block caused by BmNPV LEF-2. Thus, our findings indicate that the BmNPV lef-2 gene plays a crucial role in viral DNA replication and can regulate host cell cycle processes. This study furthers our understanding of baculovirus-host cell interactions and provides new insight into the molecular mechanisms of antiviral research.</p>","PeriodicalId":13526,"journal":{"name":"Insect Molecular Biology","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bombyx mori nucleopolyhedrovirus LEF-2 disrupts the cell cycle in the G2/M phase by triggering a host cell DNA damage response.\",\"authors\":\"Jie Wang, Miao Xiao, Zhigang Hu, Yu Lin, Kejie Li, Peng Chen, Cheng Lu, Zhanqi Dong, Minhui Pan\",\"doi\":\"10.1111/imb.12951\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>It is a common strategy for viruses to block the host cell cycle to favour their DNA replication. Baculovirus, being a double-stranded DNA virus, can arrest the cell cycle in the G2/M phase to facilitate its replication. However, the key viral genes and mechanisms crucial for inducing cell cycle arrest remain poorly understood. Here, we initially examined the impacts of several Bombyx mori nucleopolyhedrovirus (BmNPV) DNA replication-associated genes: ie1, lef-1, lef-2, lef-3, lef-4, odv-ec27 and dbp. We assessed their effects on both the host cells' DNA replication and cell cycle. Our findings reveal that when the lef-2 gene was overexpressed, it led to a significant increase in the number of cells in the G2/M phase and a reduction in the number of cells in the S phase. Furthermore, we discovered that the LEF-2 protein is located in the virogenic stroma and confirmed its involvement in viral DNA replication. Additionally, by employing interference and overexpression experiments, we found that LEF-2 influences host cell DNA replication and blocks the cell cycle in the G2/M phase by regulating the expression of CyclinB and CDK1. Finally, we found that BmNPV lef-2 triggered a DNA damage response in the host cell, and inhibiting this response removed the cell cycle block caused by BmNPV LEF-2. Thus, our findings indicate that the BmNPV lef-2 gene plays a crucial role in viral DNA replication and can regulate host cell cycle processes. This study furthers our understanding of baculovirus-host cell interactions and provides new insight into the molecular mechanisms of antiviral research.</p>\",\"PeriodicalId\":13526,\"journal\":{\"name\":\"Insect Molecular Biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Insect Molecular Biology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1111/imb.12951\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insect Molecular Biology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/imb.12951","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

阻断宿主细胞周期以促进其 DNA 复制是病毒的常见策略。杆状病毒是一种双链 DNA 病毒,可使细胞周期停滞在 G2/M 期,以促进其复制。然而,人们对诱导细胞周期停滞的关键病毒基因和机制仍然知之甚少。在这里,我们初步研究了几种蚕核多角体病毒(BmNPV)DNA复制相关基因:ie1、lef-1、lef-2、lef-3、lef-4、odv-ec27和dbp的影响。我们评估了它们对宿主细胞DNA复制和细胞周期的影响。我们的研究结果表明,当过量表达lef-2基因时,处于G2/M期的细胞数量会显著增加,而处于S期的细胞数量则会减少。此外,我们还发现 LEF-2 蛋白位于病毒原基质中,并证实它参与了病毒 DNA 复制。此外,通过干扰和过表达实验,我们发现 LEF-2 会影响宿主细胞的 DNA 复制,并通过调节 CyclinB 和 CDK1 的表达阻断 G2/M 期的细胞周期。最后,我们发现 BmNPV lef-2 触发了宿主细胞的 DNA 损伤反应,而抑制这种反应可消除 BmNPV LEF-2 造成的细胞周期阻滞。因此,我们的研究结果表明,BmNPV lef-2 基因在病毒 DNA 复制中起着关键作用,并能调节宿主细胞周期过程。这项研究加深了我们对杆状病毒-宿主细胞相互作用的理解,并为抗病毒研究的分子机制提供了新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bombyx mori nucleopolyhedrovirus LEF-2 disrupts the cell cycle in the G2/M phase by triggering a host cell DNA damage response.

It is a common strategy for viruses to block the host cell cycle to favour their DNA replication. Baculovirus, being a double-stranded DNA virus, can arrest the cell cycle in the G2/M phase to facilitate its replication. However, the key viral genes and mechanisms crucial for inducing cell cycle arrest remain poorly understood. Here, we initially examined the impacts of several Bombyx mori nucleopolyhedrovirus (BmNPV) DNA replication-associated genes: ie1, lef-1, lef-2, lef-3, lef-4, odv-ec27 and dbp. We assessed their effects on both the host cells' DNA replication and cell cycle. Our findings reveal that when the lef-2 gene was overexpressed, it led to a significant increase in the number of cells in the G2/M phase and a reduction in the number of cells in the S phase. Furthermore, we discovered that the LEF-2 protein is located in the virogenic stroma and confirmed its involvement in viral DNA replication. Additionally, by employing interference and overexpression experiments, we found that LEF-2 influences host cell DNA replication and blocks the cell cycle in the G2/M phase by regulating the expression of CyclinB and CDK1. Finally, we found that BmNPV lef-2 triggered a DNA damage response in the host cell, and inhibiting this response removed the cell cycle block caused by BmNPV LEF-2. Thus, our findings indicate that the BmNPV lef-2 gene plays a crucial role in viral DNA replication and can regulate host cell cycle processes. This study furthers our understanding of baculovirus-host cell interactions and provides new insight into the molecular mechanisms of antiviral research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Insect Molecular Biology
Insect Molecular Biology 生物-昆虫学
CiteScore
4.80
自引率
3.80%
发文量
68
审稿时长
6-12 weeks
期刊介绍: Insect Molecular Biology has been dedicated to providing researchers with the opportunity to publish high quality original research on topics broadly related to insect molecular biology since 1992. IMB is particularly interested in publishing research in insect genomics/genes and proteomics/proteins. This includes research related to: • insect gene structure • control of gene expression • localisation and function/activity of proteins • interactions of proteins and ligands/substrates • effect of mutations on gene/protein function • evolution of insect genes/genomes, especially where principles relevant to insects in general are established • molecular population genetics where data are used to identify genes (or regions of genomes) involved in specific adaptations • gene mapping using molecular tools • molecular interactions of insects with microorganisms including Wolbachia, symbionts and viruses or other pathogens transmitted by insects Papers can include large data sets e.g.from micro-array or proteomic experiments or analyses of genome sequences done in silico (subject to the data being placed in the context of hypothesis testing).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信