Y Wu, N Shen, C Hope, H I Noh, B N Richardson, M C Swartz, J Bai
{"title":"对整个结直肠癌治疗过程中的肠道微生物组、代谢物和多组学生物标记物进行系统回顾。","authors":"Y Wu, N Shen, C Hope, H I Noh, B N Richardson, M C Swartz, J Bai","doi":"10.1163/18762891-bja00026","DOIUrl":null,"url":null,"abstract":"<p><p>The gut microbiome and the microbial metabolome contribute to treatment efficacy and treatment outcomes across the cancer care spectrum. This study systematically reviewed the existing literature between 2007 to March 2022 to elucidate the role of gut microbiota-metabolite biomarkers in colorectal cancer (CRC) care and treatment-related outcomes. Using Covidence, all studies identified were screened by title and abstract, followed by a full-text review using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines and data extraction. We analysed 13 non-experimental and 9 experimental CRC studies and found that, usually, the α-diversity of the gut microbiome and short-chain fatty acids decreased in CRC patients, while amino acids (e.g. glutamate) increased in CRC patients. Correlations between specific gut microbial taxa and metabolites were identified, with amino acids, fatty acids, and glycerol positively associated with certain gut microbes. Interventions promoting gut microbes and microbial metabolites associated with better health outcomes (e.g. Bifidobacterium, Lactobacillus, butyric acid, and bile acid) can potentially promote treatment efficacy and improve cancer care outcomes. Gut microbial metabolism should be integrated into targeted cancer interventions for CRC patients, given the confirmed role of the gut microbiome and metabolome pathways across the CRC care continuum.</p>","PeriodicalId":8834,"journal":{"name":"Beneficial microbes","volume":" ","pages":"539-563"},"PeriodicalIF":3.0000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A systematic review of the gut microbiome, metabolites, and multi-omics biomarkers across the colorectal cancer care continuum.\",\"authors\":\"Y Wu, N Shen, C Hope, H I Noh, B N Richardson, M C Swartz, J Bai\",\"doi\":\"10.1163/18762891-bja00026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The gut microbiome and the microbial metabolome contribute to treatment efficacy and treatment outcomes across the cancer care spectrum. This study systematically reviewed the existing literature between 2007 to March 2022 to elucidate the role of gut microbiota-metabolite biomarkers in colorectal cancer (CRC) care and treatment-related outcomes. Using Covidence, all studies identified were screened by title and abstract, followed by a full-text review using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines and data extraction. We analysed 13 non-experimental and 9 experimental CRC studies and found that, usually, the α-diversity of the gut microbiome and short-chain fatty acids decreased in CRC patients, while amino acids (e.g. glutamate) increased in CRC patients. Correlations between specific gut microbial taxa and metabolites were identified, with amino acids, fatty acids, and glycerol positively associated with certain gut microbes. Interventions promoting gut microbes and microbial metabolites associated with better health outcomes (e.g. Bifidobacterium, Lactobacillus, butyric acid, and bile acid) can potentially promote treatment efficacy and improve cancer care outcomes. Gut microbial metabolism should be integrated into targeted cancer interventions for CRC patients, given the confirmed role of the gut microbiome and metabolome pathways across the CRC care continuum.</p>\",\"PeriodicalId\":8834,\"journal\":{\"name\":\"Beneficial microbes\",\"volume\":\" \",\"pages\":\"539-563\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Beneficial microbes\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1163/18762891-bja00026\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Beneficial microbes","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1163/18762891-bja00026","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
A systematic review of the gut microbiome, metabolites, and multi-omics biomarkers across the colorectal cancer care continuum.
The gut microbiome and the microbial metabolome contribute to treatment efficacy and treatment outcomes across the cancer care spectrum. This study systematically reviewed the existing literature between 2007 to March 2022 to elucidate the role of gut microbiota-metabolite biomarkers in colorectal cancer (CRC) care and treatment-related outcomes. Using Covidence, all studies identified were screened by title and abstract, followed by a full-text review using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines and data extraction. We analysed 13 non-experimental and 9 experimental CRC studies and found that, usually, the α-diversity of the gut microbiome and short-chain fatty acids decreased in CRC patients, while amino acids (e.g. glutamate) increased in CRC patients. Correlations between specific gut microbial taxa and metabolites were identified, with amino acids, fatty acids, and glycerol positively associated with certain gut microbes. Interventions promoting gut microbes and microbial metabolites associated with better health outcomes (e.g. Bifidobacterium, Lactobacillus, butyric acid, and bile acid) can potentially promote treatment efficacy and improve cancer care outcomes. Gut microbial metabolism should be integrated into targeted cancer interventions for CRC patients, given the confirmed role of the gut microbiome and metabolome pathways across the CRC care continuum.
期刊介绍:
Beneficial Microbes is a peer-reviewed scientific journal with a specific area of focus: the promotion of the science of microbes beneficial to the health and wellbeing of man and animal. The journal contains original research papers and critical reviews in all areas dealing with beneficial microbes in both the small and large intestine, together with opinions, a calendar of forthcoming beneficial microbes-related events and book reviews. The journal takes a multidisciplinary approach and focuses on a broad spectrum of issues, including safety aspects of pro- & prebiotics, regulatory aspects, mechanisms of action, health benefits for the host, optimal production processes, screening methods, (meta)genomics, proteomics and metabolomics, host and bacterial physiology, application, and role in health and disease in man and animal. Beneficial Microbes is intended to serve the needs of researchers and professionals from the scientific community and industry, as well as those of policy makers and regulators.
The journal will have five major sections:
* Food, nutrition and health
* Animal nutrition
* Processing and application
* Regulatory & safety aspects
* Medical & health applications
In these sections, topics dealt with by Beneficial Microbes include:
* Worldwide safety and regulatory issues
* Human and animal nutrition and health effects
* Latest discoveries in mechanistic studies and screening methods to unravel mode of action
* Host physiology related to allergy, inflammation, obesity, etc.
* Trends in application of (meta)genomics, proteomics and metabolomics
* New developments in how processing optimizes pro- & prebiotics for application
* Bacterial physiology related to health benefits