基于二维镉空位引导 Cd0.85PS3Li0.15H0.15 的高性能质子场效应晶体管。

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2024-08-27 Epub Date: 2024-08-15 DOI:10.1021/acsnano.4c03649
Wenhao Shi, Xitang Qian, Chuankai Zou, Meng Zhang, Chenhui Huang, Xiangshui Miao, Lei Ye
{"title":"基于二维镉空位引导 Cd0.85PS3Li0.15H0.15 的高性能质子场效应晶体管。","authors":"Wenhao Shi, Xitang Qian, Chuankai Zou, Meng Zhang, Chenhui Huang, Xiangshui Miao, Lei Ye","doi":"10.1021/acsnano.4c03649","DOIUrl":null,"url":null,"abstract":"<p><p>Ion transport is a critical phenomenon underpinning numerous biological, physical, and chemical systems. Proton transistors leveraging proton transport face significant limitations, such as a low on-off ratio and deficient carrier mobility, which restrict their applicability in biological and other scenarios. This study explores the use of two-dimensional (2D) vacancy-residing transition metal phosphorus trichallcogenide-based membranes as the active layer for proton field-effect transistors. The synthesized Cd<sub>0.85</sub>PS<sub>3</sub>Li<sub>0.15</sub>H<sub>0.15</sub> membrane exhibits a well-organized layered structure and high hydrophilicity, with nanometer-sized interlayers containing interconnected water networks. These distinct features facilitate proton conduction, leading to a high proton conductivity value of 0.83 S cm<sup>-1</sup> at 98% relative humidity and 90 °C, with an activation energy of 0.26 eV. The Cd<sub>0.85</sub>PS<sub>3</sub>Li<sub>0.15</sub>H<sub>0.15</sub>-based proton transistor demonstrates tunability via gate voltage, thereby enabling effective modulation of proton flow across source and drain electrodes. The transistor notably showcases superior switching characteristics, with an on/off ratio surpassing 5.51 and a carrier mobility of 8.84 × 10<sup>-2</sup> cm<sup>2</sup> V<sup>-1</sup> s<sup>-1</sup>. The underlying mechanism for this performance enhancement is attributed to electric-field-induced switching in Cd vacancies. This research boosts the development of highly versatile ionotropic devices by introducing advanced 2D ion-conductive membranes.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":" ","pages":"22917-22925"},"PeriodicalIF":16.0000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-Performance Proton Field-Effect Transistor Based on Two-Dimensional Cd Vacancy-Resided Cd<sub>0.85</sub>PS<sub>3</sub>Li<sub>0.15</sub>H<sub>0.15</sub>.\",\"authors\":\"Wenhao Shi, Xitang Qian, Chuankai Zou, Meng Zhang, Chenhui Huang, Xiangshui Miao, Lei Ye\",\"doi\":\"10.1021/acsnano.4c03649\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ion transport is a critical phenomenon underpinning numerous biological, physical, and chemical systems. Proton transistors leveraging proton transport face significant limitations, such as a low on-off ratio and deficient carrier mobility, which restrict their applicability in biological and other scenarios. This study explores the use of two-dimensional (2D) vacancy-residing transition metal phosphorus trichallcogenide-based membranes as the active layer for proton field-effect transistors. The synthesized Cd<sub>0.85</sub>PS<sub>3</sub>Li<sub>0.15</sub>H<sub>0.15</sub> membrane exhibits a well-organized layered structure and high hydrophilicity, with nanometer-sized interlayers containing interconnected water networks. These distinct features facilitate proton conduction, leading to a high proton conductivity value of 0.83 S cm<sup>-1</sup> at 98% relative humidity and 90 °C, with an activation energy of 0.26 eV. The Cd<sub>0.85</sub>PS<sub>3</sub>Li<sub>0.15</sub>H<sub>0.15</sub>-based proton transistor demonstrates tunability via gate voltage, thereby enabling effective modulation of proton flow across source and drain electrodes. The transistor notably showcases superior switching characteristics, with an on/off ratio surpassing 5.51 and a carrier mobility of 8.84 × 10<sup>-2</sup> cm<sup>2</sup> V<sup>-1</sup> s<sup>-1</sup>. The underlying mechanism for this performance enhancement is attributed to electric-field-induced switching in Cd vacancies. This research boosts the development of highly versatile ionotropic devices by introducing advanced 2D ion-conductive membranes.</p>\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\" \",\"pages\":\"22917-22925\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsnano.4c03649\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c03649","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/15 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

离子传输是支撑众多生物、物理和化学系统的关键现象。利用质子传输的质子晶体管面临着很大的局限性,如低通断比和载流子迁移率不足,这限制了其在生物和其他应用场景中的适用性。本研究探讨了利用二维(2D)空位驻留过渡金属磷三氯烯基膜作为质子场效应晶体管的活性层。合成的 Cd0.85PS3Li0.15H0.15 膜具有组织良好的层状结构和高亲水性,纳米级的夹层中含有相互连接的水网络。这些显著特点有利于质子传导,因此在相对湿度为 98% 和温度为 90°C 时,质子传导率高达 0.83 S cm-1,活化能为 0.26 eV。基于 Cd0.85PS3Li0.15H0.15 的质子晶体管通过栅极电压实现了可调谐性,从而可以有效地调节源极和漏极上的质子流。该晶体管的开关特性显著提高,开关比超过 5.51,载流子迁移率达到 8.84 × 10-2 cm2 V-1 s-1。性能提升的根本原因在于镉空位的电场诱导开关。这项研究通过引入先进的二维离子导电膜,推动了多功能离子向性器件的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

High-Performance Proton Field-Effect Transistor Based on Two-Dimensional Cd Vacancy-Resided Cd<sub>0.85</sub>PS<sub>3</sub>Li<sub>0.15</sub>H<sub>0.15</sub>.

High-Performance Proton Field-Effect Transistor Based on Two-Dimensional Cd Vacancy-Resided Cd0.85PS3Li0.15H0.15.

Ion transport is a critical phenomenon underpinning numerous biological, physical, and chemical systems. Proton transistors leveraging proton transport face significant limitations, such as a low on-off ratio and deficient carrier mobility, which restrict their applicability in biological and other scenarios. This study explores the use of two-dimensional (2D) vacancy-residing transition metal phosphorus trichallcogenide-based membranes as the active layer for proton field-effect transistors. The synthesized Cd0.85PS3Li0.15H0.15 membrane exhibits a well-organized layered structure and high hydrophilicity, with nanometer-sized interlayers containing interconnected water networks. These distinct features facilitate proton conduction, leading to a high proton conductivity value of 0.83 S cm-1 at 98% relative humidity and 90 °C, with an activation energy of 0.26 eV. The Cd0.85PS3Li0.15H0.15-based proton transistor demonstrates tunability via gate voltage, thereby enabling effective modulation of proton flow across source and drain electrodes. The transistor notably showcases superior switching characteristics, with an on/off ratio surpassing 5.51 and a carrier mobility of 8.84 × 10-2 cm2 V-1 s-1. The underlying mechanism for this performance enhancement is attributed to electric-field-induced switching in Cd vacancies. This research boosts the development of highly versatile ionotropic devices by introducing advanced 2D ion-conductive membranes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信