Chongwen Li, Lei Chen, Fangyuan Jiang, Zhaoning Song, Xiaoming Wang, Adam Balvanz, Esma Ugur, Yuan Liu, Cheng Liu, Aidan Maxwell, Hao Chen, Yanjiang Liu, Zaiwei Wang, Pan Xia, You Li, Sheng Fu, Nannan Sun, Corey R. Grice, Xuefei Wu, Zachary Fink, Qin Hu, Lewei Zeng, Euidae Jung, Junke Wang, So Min Park, Deying Luo, Cailing Chen, Jie Shen, Yu Han, Carlo Andrea Riccardo Perini, Juan-Pablo Correa-Baena, Zheng-Hong Lu, Thomas P. Russell, Stefaan De Wolf, Mercouri G. Kanatzidis, David S. Ginger, Bin Chen, Yanfa Yan, Edward H. Sargent
{"title":"二胺螯合物提高锡铅混合和全长晶串联太阳能电池的稳定性","authors":"Chongwen Li, Lei Chen, Fangyuan Jiang, Zhaoning Song, Xiaoming Wang, Adam Balvanz, Esma Ugur, Yuan Liu, Cheng Liu, Aidan Maxwell, Hao Chen, Yanjiang Liu, Zaiwei Wang, Pan Xia, You Li, Sheng Fu, Nannan Sun, Corey R. Grice, Xuefei Wu, Zachary Fink, Qin Hu, Lewei Zeng, Euidae Jung, Junke Wang, So Min Park, Deying Luo, Cailing Chen, Jie Shen, Yu Han, Carlo Andrea Riccardo Perini, Juan-Pablo Correa-Baena, Zheng-Hong Lu, Thomas P. Russell, Stefaan De Wolf, Mercouri G. Kanatzidis, David S. Ginger, Bin Chen, Yanfa Yan, Edward H. Sargent","doi":"10.1038/s41560-024-01613-8","DOIUrl":null,"url":null,"abstract":"<p>Perovskite tandem solar cells show promising performance, but non-radiative recombination and its progressive worsening with time, especially in the mixed Sn–Pb low-bandgap layer, limit performance and stability. Here we find that mixed Sn–Pb perovskite thin films exhibit a compositional gradient, with an excess of Sn on the surface—and we show this gradient exacerbates oxidation and increases the recombination rate. We find that diamines preferentially chelate Sn atoms, removing them from the film surface and achieving a more balanced Sn:Pb stoichiometry, making the surface of the film resistive to the oxidation of Sn. The process forms an electrically resistive low-dimensional barrier layer, passivating defects and reducing interface recombination. Further improving the homogeneity of the barrier layer using 1,2-diaminopropane results in more uniform distribution and passivation. Tandems achieve a power conversion efficiency of 28.8%. Encapsulated tandems retain 90% of initial efficiency following 1,000 h of operating at the maximum power point under simulated one-sun illumination in air without cooling.</p>","PeriodicalId":19073,"journal":{"name":"Nature Energy","volume":null,"pages":null},"PeriodicalIF":49.7000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diamine chelates for increased stability in mixed Sn–Pb and all-perovskite tandem solar cells\",\"authors\":\"Chongwen Li, Lei Chen, Fangyuan Jiang, Zhaoning Song, Xiaoming Wang, Adam Balvanz, Esma Ugur, Yuan Liu, Cheng Liu, Aidan Maxwell, Hao Chen, Yanjiang Liu, Zaiwei Wang, Pan Xia, You Li, Sheng Fu, Nannan Sun, Corey R. Grice, Xuefei Wu, Zachary Fink, Qin Hu, Lewei Zeng, Euidae Jung, Junke Wang, So Min Park, Deying Luo, Cailing Chen, Jie Shen, Yu Han, Carlo Andrea Riccardo Perini, Juan-Pablo Correa-Baena, Zheng-Hong Lu, Thomas P. Russell, Stefaan De Wolf, Mercouri G. Kanatzidis, David S. Ginger, Bin Chen, Yanfa Yan, Edward H. Sargent\",\"doi\":\"10.1038/s41560-024-01613-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Perovskite tandem solar cells show promising performance, but non-radiative recombination and its progressive worsening with time, especially in the mixed Sn–Pb low-bandgap layer, limit performance and stability. Here we find that mixed Sn–Pb perovskite thin films exhibit a compositional gradient, with an excess of Sn on the surface—and we show this gradient exacerbates oxidation and increases the recombination rate. We find that diamines preferentially chelate Sn atoms, removing them from the film surface and achieving a more balanced Sn:Pb stoichiometry, making the surface of the film resistive to the oxidation of Sn. The process forms an electrically resistive low-dimensional barrier layer, passivating defects and reducing interface recombination. Further improving the homogeneity of the barrier layer using 1,2-diaminopropane results in more uniform distribution and passivation. Tandems achieve a power conversion efficiency of 28.8%. Encapsulated tandems retain 90% of initial efficiency following 1,000 h of operating at the maximum power point under simulated one-sun illumination in air without cooling.</p>\",\"PeriodicalId\":19073,\"journal\":{\"name\":\"Nature Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":49.7000,\"publicationDate\":\"2024-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Energy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41560-024-01613-8\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Energy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41560-024-01613-8","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Diamine chelates for increased stability in mixed Sn–Pb and all-perovskite tandem solar cells
Perovskite tandem solar cells show promising performance, but non-radiative recombination and its progressive worsening with time, especially in the mixed Sn–Pb low-bandgap layer, limit performance and stability. Here we find that mixed Sn–Pb perovskite thin films exhibit a compositional gradient, with an excess of Sn on the surface—and we show this gradient exacerbates oxidation and increases the recombination rate. We find that diamines preferentially chelate Sn atoms, removing them from the film surface and achieving a more balanced Sn:Pb stoichiometry, making the surface of the film resistive to the oxidation of Sn. The process forms an electrically resistive low-dimensional barrier layer, passivating defects and reducing interface recombination. Further improving the homogeneity of the barrier layer using 1,2-diaminopropane results in more uniform distribution and passivation. Tandems achieve a power conversion efficiency of 28.8%. Encapsulated tandems retain 90% of initial efficiency following 1,000 h of operating at the maximum power point under simulated one-sun illumination in air without cooling.
Nature EnergyEnergy-Energy Engineering and Power Technology
CiteScore
75.10
自引率
1.10%
发文量
193
期刊介绍:
Nature Energy is a monthly, online-only journal committed to showcasing the most impactful research on energy, covering everything from its generation and distribution to the societal implications of energy technologies and policies.
With a focus on exploring all facets of the ongoing energy discourse, Nature Energy delves into topics such as energy generation, storage, distribution, management, and the societal impacts of energy technologies and policies. Emphasizing studies that push the boundaries of knowledge and contribute to the development of next-generation solutions, the journal serves as a platform for the exchange of ideas among stakeholders at the forefront of the energy sector.
Maintaining the hallmark standards of the Nature brand, Nature Energy boasts a dedicated team of professional editors, a rigorous peer-review process, meticulous copy-editing and production, rapid publication times, and editorial independence.
In addition to original research articles, Nature Energy also publishes a range of content types, including Comments, Perspectives, Reviews, News & Views, Features, and Correspondence, covering a diverse array of disciplines relevant to the field of energy.