{"title":"基于 MHCI 转运信号的 mRNA 疫苗可加强对 RNA 病毒的免疫保护","authors":"Yupei Zhang, Songhui Zhai, Shugang Qin, Yuting Chen, Kepan Chen, Zhiying Huang, Xing Lan, Yaoyao Luo, Guohong Li, Hao Li, Xi He, Meiwan Chen, Zhongwei Zhang, Xingchen Peng, Xin Jiang, Hai Huang, Xiangrong Song","doi":"10.1002/btm2.10709","DOIUrl":null,"url":null,"abstract":"<p>The major histocompatibility complex class I (MHCI) trafficking signal (MITD) plays a pivotal role in enhancing the efficacy of mRNA vaccines. However, there was a lack of research investigating its efficacy in enhancing immune responses to RNA virus infections. Here, we have developed an innovative strategy for the formulation of mRNA vaccines. This approach involved the integration of MITD into the mRNA sequence encoding the virus antigen. Mechanistically, MITD-based mRNA vaccines can strengthen immune protection by mimicking the dynamic trafficking properties of MHCI molecule and thus expand the memory specific B and T cells. The model MITD-based mRNA vaccines encoding binding receptor-binding domain (RBD) of SARS-CoV-2 were indeed found to achieve protective duration, optimal storage stability, broad efficacy, and high safety.</p>","PeriodicalId":9263,"journal":{"name":"Bioengineering & Translational Medicine","volume":"10 1","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/btm2.10709","citationCount":"0","resultStr":"{\"title\":\"MHCI trafficking signal-based mRNA vaccines strengthening immune protection against RNA viruses\",\"authors\":\"Yupei Zhang, Songhui Zhai, Shugang Qin, Yuting Chen, Kepan Chen, Zhiying Huang, Xing Lan, Yaoyao Luo, Guohong Li, Hao Li, Xi He, Meiwan Chen, Zhongwei Zhang, Xingchen Peng, Xin Jiang, Hai Huang, Xiangrong Song\",\"doi\":\"10.1002/btm2.10709\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The major histocompatibility complex class I (MHCI) trafficking signal (MITD) plays a pivotal role in enhancing the efficacy of mRNA vaccines. However, there was a lack of research investigating its efficacy in enhancing immune responses to RNA virus infections. Here, we have developed an innovative strategy for the formulation of mRNA vaccines. This approach involved the integration of MITD into the mRNA sequence encoding the virus antigen. Mechanistically, MITD-based mRNA vaccines can strengthen immune protection by mimicking the dynamic trafficking properties of MHCI molecule and thus expand the memory specific B and T cells. The model MITD-based mRNA vaccines encoding binding receptor-binding domain (RBD) of SARS-CoV-2 were indeed found to achieve protective duration, optimal storage stability, broad efficacy, and high safety.</p>\",\"PeriodicalId\":9263,\"journal\":{\"name\":\"Bioengineering & Translational Medicine\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/btm2.10709\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioengineering & Translational Medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/btm2.10709\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering & Translational Medicine","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/btm2.10709","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
摘要
主要组织相容性复合体 I 类(MHCI)贩运信号(MITD)在提高 mRNA 疫苗的功效方面发挥着关键作用。然而,目前还缺乏对其在增强 RNA 病毒感染免疫反应方面功效的研究。在此,我们开发了一种创新的 mRNA 疫苗配方策略。这种方法是将 MITD 整合到编码病毒抗原的 mRNA 序列中。从机理上讲,基于 MITD 的 mRNA 疫苗可以通过模仿 MHCI 分子的动态贩运特性来加强免疫保护,从而扩大记忆特异性 B 细胞和 T 细胞。基于 MITD 的 mRNA 疫苗模型编码了 SARS-CoV-2 的结合受体结合域 (RBD),其保护持续时间长、储存稳定性最佳、效力广泛且安全性高。
The major histocompatibility complex class I (MHCI) trafficking signal (MITD) plays a pivotal role in enhancing the efficacy of mRNA vaccines. However, there was a lack of research investigating its efficacy in enhancing immune responses to RNA virus infections. Here, we have developed an innovative strategy for the formulation of mRNA vaccines. This approach involved the integration of MITD into the mRNA sequence encoding the virus antigen. Mechanistically, MITD-based mRNA vaccines can strengthen immune protection by mimicking the dynamic trafficking properties of MHCI molecule and thus expand the memory specific B and T cells. The model MITD-based mRNA vaccines encoding binding receptor-binding domain (RBD) of SARS-CoV-2 were indeed found to achieve protective duration, optimal storage stability, broad efficacy, and high safety.
期刊介绍:
Bioengineering & Translational Medicine, an official, peer-reviewed online open-access journal of the American Institute of Chemical Engineers (AIChE) and the Society for Biological Engineering (SBE), focuses on how chemical and biological engineering approaches drive innovative technologies and solutions that impact clinical practice and commercial healthcare products.