具有正交边界的曲率变方体

IF 1 2区 数学 Q1 MATHEMATICS
Ernst Kuwert, Marius Müller
{"title":"具有正交边界的曲率变方体","authors":"Ernst Kuwert,&nbsp;Marius Müller","doi":"10.1112/jlms.12976","DOIUrl":null,"url":null,"abstract":"<p>We consider the class <span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>S</mi>\n <mo>⊥</mo>\n <mi>m</mi>\n </msubsup>\n <mrow>\n <mo>(</mo>\n <mi>Ω</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>${\\bf S}^m_\\perp (\\Omega)$</annotation>\n </semantics></math> of <span></span><math>\n <semantics>\n <mi>m</mi>\n <annotation>$m$</annotation>\n </semantics></math>-dimensional surfaces in <span></span><math>\n <semantics>\n <mrow>\n <mover>\n <mi>Ω</mi>\n <mo>¯</mo>\n </mover>\n <mo>⊂</mo>\n <msup>\n <mi>R</mi>\n <mi>n</mi>\n </msup>\n </mrow>\n <annotation>$\\overline{\\Omega } \\subset {\\mathbb {R}}^n$</annotation>\n </semantics></math> that intersect <span></span><math>\n <semantics>\n <mrow>\n <mi>S</mi>\n <mo>=</mo>\n <mi>∂</mi>\n <mi>Ω</mi>\n </mrow>\n <annotation>$S = \\partial \\Omega$</annotation>\n </semantics></math> orthogonally along the boundary. A piece of an affine <span></span><math>\n <semantics>\n <mi>m</mi>\n <annotation>$m$</annotation>\n </semantics></math>-plane in <span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>S</mi>\n <mo>⊥</mo>\n <mi>m</mi>\n </msubsup>\n <mrow>\n <mo>(</mo>\n <mi>Ω</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>${\\bf S}^m_\\perp (\\Omega)$</annotation>\n </semantics></math> is called an orthogonal slice. We prove estimates for the area by the <span></span><math>\n <semantics>\n <msup>\n <mi>L</mi>\n <mi>p</mi>\n </msup>\n <annotation>$L^p$</annotation>\n </semantics></math> integral of the second fundamental form in three cases: first, when <span></span><math>\n <semantics>\n <mi>Ω</mi>\n <annotation>$\\Omega$</annotation>\n </semantics></math> admits no orthogonal slices, second for <span></span><math>\n <semantics>\n <mrow>\n <mi>m</mi>\n <mo>=</mo>\n <mi>p</mi>\n <mo>=</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$m = p = 2$</annotation>\n </semantics></math> if all orthogonal slices are topological disks, and finally, for all <span></span><math>\n <semantics>\n <mi>Ω</mi>\n <annotation>$\\Omega$</annotation>\n </semantics></math> if the surfaces are confined to a neighborhood of <span></span><math>\n <semantics>\n <mi>S</mi>\n <annotation>$S$</annotation>\n </semantics></math>. The orthogonality constraint has a weak formulation for curvature varifolds. We classify those varifolds of vanishing curvature. As an application, we prove for any <span></span><math>\n <semantics>\n <mi>Ω</mi>\n <annotation>$\\Omega$</annotation>\n </semantics></math> the existence of an orthogonal 2-varifold that minimizes the <span></span><math>\n <semantics>\n <msup>\n <mi>L</mi>\n <mn>2</mn>\n </msup>\n <annotation>$L^2$</annotation>\n </semantics></math> curvature in the integer rectifiable class.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"110 3","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.12976","citationCount":"0","resultStr":"{\"title\":\"Curvature varifolds with orthogonal boundary\",\"authors\":\"Ernst Kuwert,&nbsp;Marius Müller\",\"doi\":\"10.1112/jlms.12976\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider the class <span></span><math>\\n <semantics>\\n <mrow>\\n <msubsup>\\n <mi>S</mi>\\n <mo>⊥</mo>\\n <mi>m</mi>\\n </msubsup>\\n <mrow>\\n <mo>(</mo>\\n <mi>Ω</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>${\\\\bf S}^m_\\\\perp (\\\\Omega)$</annotation>\\n </semantics></math> of <span></span><math>\\n <semantics>\\n <mi>m</mi>\\n <annotation>$m$</annotation>\\n </semantics></math>-dimensional surfaces in <span></span><math>\\n <semantics>\\n <mrow>\\n <mover>\\n <mi>Ω</mi>\\n <mo>¯</mo>\\n </mover>\\n <mo>⊂</mo>\\n <msup>\\n <mi>R</mi>\\n <mi>n</mi>\\n </msup>\\n </mrow>\\n <annotation>$\\\\overline{\\\\Omega } \\\\subset {\\\\mathbb {R}}^n$</annotation>\\n </semantics></math> that intersect <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>S</mi>\\n <mo>=</mo>\\n <mi>∂</mi>\\n <mi>Ω</mi>\\n </mrow>\\n <annotation>$S = \\\\partial \\\\Omega$</annotation>\\n </semantics></math> orthogonally along the boundary. A piece of an affine <span></span><math>\\n <semantics>\\n <mi>m</mi>\\n <annotation>$m$</annotation>\\n </semantics></math>-plane in <span></span><math>\\n <semantics>\\n <mrow>\\n <msubsup>\\n <mi>S</mi>\\n <mo>⊥</mo>\\n <mi>m</mi>\\n </msubsup>\\n <mrow>\\n <mo>(</mo>\\n <mi>Ω</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>${\\\\bf S}^m_\\\\perp (\\\\Omega)$</annotation>\\n </semantics></math> is called an orthogonal slice. We prove estimates for the area by the <span></span><math>\\n <semantics>\\n <msup>\\n <mi>L</mi>\\n <mi>p</mi>\\n </msup>\\n <annotation>$L^p$</annotation>\\n </semantics></math> integral of the second fundamental form in three cases: first, when <span></span><math>\\n <semantics>\\n <mi>Ω</mi>\\n <annotation>$\\\\Omega$</annotation>\\n </semantics></math> admits no orthogonal slices, second for <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>m</mi>\\n <mo>=</mo>\\n <mi>p</mi>\\n <mo>=</mo>\\n <mn>2</mn>\\n </mrow>\\n <annotation>$m = p = 2$</annotation>\\n </semantics></math> if all orthogonal slices are topological disks, and finally, for all <span></span><math>\\n <semantics>\\n <mi>Ω</mi>\\n <annotation>$\\\\Omega$</annotation>\\n </semantics></math> if the surfaces are confined to a neighborhood of <span></span><math>\\n <semantics>\\n <mi>S</mi>\\n <annotation>$S$</annotation>\\n </semantics></math>. The orthogonality constraint has a weak formulation for curvature varifolds. We classify those varifolds of vanishing curvature. As an application, we prove for any <span></span><math>\\n <semantics>\\n <mi>Ω</mi>\\n <annotation>$\\\\Omega$</annotation>\\n </semantics></math> the existence of an orthogonal 2-varifold that minimizes the <span></span><math>\\n <semantics>\\n <msup>\\n <mi>L</mi>\\n <mn>2</mn>\\n </msup>\\n <annotation>$L^2$</annotation>\\n </semantics></math> curvature in the integer rectifiable class.</p>\",\"PeriodicalId\":49989,\"journal\":{\"name\":\"Journal of the London Mathematical Society-Second Series\",\"volume\":\"110 3\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.12976\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the London Mathematical Society-Second Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/jlms.12976\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.12976","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑 S ⊥ m ( Ω ) ${\bf S}^m_\perp (\Omega)$ 类中 Ω ¯ ⊂ R n $\overline{\Omega } 的 m $m$ -dimensional 曲面。\子集 {\mathbb {R}}^n$ 沿着边界与 S = ∂ Ω $S = \partial \Omega$ 正交。在 S ⊥ m ( Ω ) ${\bf S}^m_\perp (\Omega)$ 中的一块仿射 m $m$ -平面称为正交切片。我们将在三种情况下证明第二基本形式的 L p $L^p$ 积分对面积的估计:首先,当 Ω $\Omega$ 不允许正交切片时;其次,当 m = p = 2 $m = p = 2$ 时,如果所有正交切片都是拓扑盘;最后,当表面被限制在 S $S$ 的邻域内时,对于所有 Ω $\Omega$ 。正交约束对曲率变分有一个弱表述。我们对曲率消失的变曲率进行分类。作为应用,我们证明了对于任意 Ω $\Omega$ 都存在一个正交 2 变曲,它可以最小化整数可整型类中的 L 2 $L^2$ 曲率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Curvature varifolds with orthogonal boundary

We consider the class S m ( Ω ) ${\bf S}^m_\perp (\Omega)$ of m $m$ -dimensional surfaces in Ω ¯ R n $\overline{\Omega } \subset {\mathbb {R}}^n$ that intersect S = Ω $S = \partial \Omega$ orthogonally along the boundary. A piece of an affine m $m$ -plane in S m ( Ω ) ${\bf S}^m_\perp (\Omega)$ is called an orthogonal slice. We prove estimates for the area by the L p $L^p$ integral of the second fundamental form in three cases: first, when Ω $\Omega$ admits no orthogonal slices, second for m = p = 2 $m = p = 2$ if all orthogonal slices are topological disks, and finally, for all Ω $\Omega$ if the surfaces are confined to a neighborhood of S $S$ . The orthogonality constraint has a weak formulation for curvature varifolds. We classify those varifolds of vanishing curvature. As an application, we prove for any Ω $\Omega$ the existence of an orthogonal 2-varifold that minimizes the L 2 $L^2$ curvature in the integer rectifiable class.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信