{"title":"特殊立方零点和对偶变化","authors":"Victor Y. Wang","doi":"10.1112/jlms.12975","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mi>F</mi>\n <annotation>$F$</annotation>\n </semantics></math> be a diagonal cubic form over <span></span><math>\n <semantics>\n <mi>Z</mi>\n <annotation>$\\mathbb {Z}$</annotation>\n </semantics></math> in six variables. From the dual variety in the delta method of Duke–Friedlander–Iwaniec and Heath-Brown, we unconditionally extract a weighted count of certain special integral zeros of <span></span><math>\n <semantics>\n <mi>F</mi>\n <annotation>$F$</annotation>\n </semantics></math> in regions of diameter <span></span><math>\n <semantics>\n <mrow>\n <mi>X</mi>\n <mo>→</mo>\n <mi>∞</mi>\n </mrow>\n <annotation>$X \\rightarrow \\infty$</annotation>\n </semantics></math>. Heath-Brown did the same in four variables, but our analysis differs and captures some novel features. We also put forth an axiomatic framework for more general <span></span><math>\n <semantics>\n <mi>F</mi>\n <annotation>$F$</annotation>\n </semantics></math>.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"110 3","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.12975","citationCount":"0","resultStr":"{\"title\":\"Special cubic zeros and the dual variety\",\"authors\":\"Victor Y. Wang\",\"doi\":\"10.1112/jlms.12975\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span></span><math>\\n <semantics>\\n <mi>F</mi>\\n <annotation>$F$</annotation>\\n </semantics></math> be a diagonal cubic form over <span></span><math>\\n <semantics>\\n <mi>Z</mi>\\n <annotation>$\\\\mathbb {Z}$</annotation>\\n </semantics></math> in six variables. From the dual variety in the delta method of Duke–Friedlander–Iwaniec and Heath-Brown, we unconditionally extract a weighted count of certain special integral zeros of <span></span><math>\\n <semantics>\\n <mi>F</mi>\\n <annotation>$F$</annotation>\\n </semantics></math> in regions of diameter <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>X</mi>\\n <mo>→</mo>\\n <mi>∞</mi>\\n </mrow>\\n <annotation>$X \\\\rightarrow \\\\infty$</annotation>\\n </semantics></math>. Heath-Brown did the same in four variables, but our analysis differs and captures some novel features. We also put forth an axiomatic framework for more general <span></span><math>\\n <semantics>\\n <mi>F</mi>\\n <annotation>$F$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":49989,\"journal\":{\"name\":\"Journal of the London Mathematical Society-Second Series\",\"volume\":\"110 3\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.12975\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the London Mathematical Society-Second Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/jlms.12975\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.12975","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
设 F $F$ 是六变量 Z $\mathbb {Z}$ 上的对角立方形式。从杜克-弗里德兰德-伊瓦尼茨(Duke-Friedlander-Iwaniec)和希斯-布朗(Heath-Brown)的三角法中的对偶变化中,我们无条件地提取了直径为 X → ∞ $X \rightarrow \infty$ 的区域中 F $F$ 的某些特殊积分零点的加权计数。希斯-布朗在四个变量中做了同样的工作,但我们的分析有所不同,并捕捉到了一些新的特征。我们还为更一般的 F $F$ 提出了一个公理框架。
Let be a diagonal cubic form over in six variables. From the dual variety in the delta method of Duke–Friedlander–Iwaniec and Heath-Brown, we unconditionally extract a weighted count of certain special integral zeros of in regions of diameter . Heath-Brown did the same in four variables, but our analysis differs and captures some novel features. We also put forth an axiomatic framework for more general .
期刊介绍:
The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.